THE NIDEC MOTORS & ACTUATORS DC MOTOR RANGE

MOTORS WITHOUT GEARING

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Nominal Torque (Nm)</th>
<th>No Load Speed (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMP</td>
<td>Smaller diameter motors with single & double output shafts</td>
<td>0.05 – 0.1</td>
<td>2700 – 3250</td>
</tr>
<tr>
<td>GMK</td>
<td>Higher torque single output shaft motors</td>
<td>0.12 – 0.4</td>
<td>2200 – 5250</td>
</tr>
<tr>
<td>GML</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOTORS WITH SPUR GEAR

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Nominal Torque (Nm)</th>
<th>No Load Speed (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMAG</td>
<td>Motors that can address all your in-line drive requirements where you need higher torque, lower speed rotation</td>
<td>0.2 – 4</td>
<td>17 – 200</td>
</tr>
<tr>
<td>GMPI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOTORS WITH WORM GEAR

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Nominal Torque (Nm)</th>
<th>No Load Speed (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMPD</td>
<td>Low/medium torque with perpendicular output shafts</td>
<td>0.5 – 4</td>
<td>21 – 540</td>
</tr>
<tr>
<td>GMPG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMPS</td>
<td>Actuators fitted with a lead-screw to drive your linear motion needs</td>
<td>1 – 2</td>
<td>6</td>
</tr>
<tr>
<td>DCK31</td>
<td>Cost competitive medium torque range worm drive motors</td>
<td>3 – 6</td>
<td>14 – 270</td>
</tr>
<tr>
<td>DCK35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWMK</td>
<td>Weight optimized medium torque range</td>
<td>0.8 – 8</td>
<td>48 – 350</td>
</tr>
<tr>
<td>SW2K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW2L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWMV</td>
<td>Powerful medium & high torque worm gear motors</td>
<td>3 – 20</td>
<td>27 – 220</td>
</tr>
<tr>
<td>SWMG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

- **IMPORTANT EXPLANATORY INFORMATION** ... 2

- **DC MOTORS WITHOUT GEARING** ... 6
 - SERIES 0220 (GMP) ... 7
 - SERIES 0272 (GMK) ... 17
 - SERIES 0273 (GML) ... 25

- **DC MOTORS WITH SPUR GEAR** .. 34
 - SERIES 0202 (GMAG) .. 35
 - SERIES 0231 (GMPI) ... 41

- **DC MOTORS WITH WORM GEAR** ... 48
 - SERIES 0320 (GMPD) .. 49
 - SERIES 0225 (GMPG) .. 67
 - SERIES 0223 (SWMP) ... 79
 - SERIES 0321 (GMPS) ... 91
 - SERIES 0266 (DCK31) ... 101
 - SERIES 0268 (DCK35) .. 133
 - SERIES 0270 (SWMK) ... 149
 - SERIES 0277 (SW2K) ... 163
 - SERIES 0278 (SW2L) ... 181
 - SERIES 0291 (SWMV) .. 191
 - SERIES 0292 (SWMG) .. 199

- **INDEX** ... 204
Subject to change and error, also of a technical nature. Therefore use only product drawings for design purposes. These are available from your representative.

The catalog illustrations do not all correspond to DIN requirements. The operating values indicated are valid for 20°C ambient temperature. In all cases the motors should be tested for their suitability in the customer's particular application. Specific motor designs for special customers. Motors in this catalog are not intended for the consumer. In accordance with EU regulations, these products do not require CE certification marking. Some motors have customer specific designs. They require new tooling for new designs.

TERMS, SYMBOLS AND UNITS ACCORDING TO DIN

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_n</td>
<td>[V]</td>
<td>Rated voltage</td>
</tr>
<tr>
<td>n_n</td>
<td>[min⁻¹]</td>
<td>No-load speed ± 10%</td>
</tr>
<tr>
<td>M_n</td>
<td>[Nm]</td>
<td>Nominal torque at the output shaft</td>
</tr>
<tr>
<td>M_s</td>
<td>[Nm]</td>
<td>Starting torque</td>
</tr>
<tr>
<td>i</td>
<td></td>
<td>Gear ratio</td>
</tr>
<tr>
<td>J_s</td>
<td>[kgm²] x 10⁻⁴</td>
<td>Armature load inertia</td>
</tr>
<tr>
<td>R</td>
<td>[mΩ]</td>
<td>Armature resistance, 2/4 commutator bars</td>
</tr>
<tr>
<td>L</td>
<td>[mH]</td>
<td>Armature inductance, 2/4 commutator bars</td>
</tr>
</tbody>
</table>

Drawing
- dimensional drawing

Shaft
- dimensions of shaft ends

Wiring diagram
- motor wiring diagram

Connection
- dimensions and positions of motor connections

Materials
- BRZ = bronze, KST = plastic, ST = steel, HGW = resinbonded fabric

Diagrams
- Direction of rotation when looking onto motor shaft: The curves show the speed and the current as a function of the torque. These are average values at room temperature. Divergences of ± 10% are possible in the series.

- Preferred direction of rotation: Worm gear motors have a preferred direction of rotation, indicated in the drawings by a larger arrow. If the motor rotates against the preferred rotation direction, power decreases by approx. 10%.
CONVERSION OF TORQUE VALUES

<table>
<thead>
<tr>
<th>Nm</th>
<th>Ncm</th>
<th>pcm</th>
<th>kpcm</th>
<th>kpm</th>
<th>oz in</th>
<th>in lbs</th>
<th>ft lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>10.2 x 10^3</td>
<td>10.2</td>
<td>0.102</td>
<td>141.6</td>
<td>8.85</td>
<td>0.738</td>
</tr>
<tr>
<td>9.8 x 10^-5</td>
<td>9.8 x 10^-3</td>
<td>1</td>
<td>10^3</td>
<td>10^3</td>
<td>1.39 x 10^2</td>
<td>8.68 x 10^4</td>
<td>7.23 x 10^6</td>
</tr>
</tbody>
</table>

CONVERSION OF FORCES

<table>
<thead>
<tr>
<th>N</th>
<th>kp</th>
<th>p</th>
<th>oz</th>
<th>lbf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.102</td>
<td>102</td>
<td>3.6</td>
<td>0.225</td>
</tr>
<tr>
<td>9.8 x 10^-3</td>
<td>1.02 x 10^-2</td>
<td>1.02 x 10^-3</td>
<td>1.42</td>
<td>8.85 x 10^-2</td>
</tr>
</tbody>
</table>

CONVERSION OF POWER

<table>
<thead>
<tr>
<th>kW</th>
<th>PS</th>
<th>HP</th>
<th>kpm/s</th>
<th>kcal/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.36</td>
<td>1.34</td>
<td>102</td>
<td>0.239</td>
</tr>
<tr>
<td>0.735</td>
<td>1</td>
<td>0.986</td>
<td>75</td>
<td>0.176</td>
</tr>
<tr>
<td>0.746</td>
<td>1.01</td>
<td>1</td>
<td>76</td>
<td>0.178</td>
</tr>
</tbody>
</table>

CONVERSION OF TEMPERATURES

<table>
<thead>
<tr>
<th>t_c [°C] Celsius</th>
<th>t_f [°F] Fahrenheit</th>
<th>T_c [K] Kelvin</th>
<th>T_f [°R] Rankine</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_c = \frac{5}{9}(t_c - 32)</td>
<td>t_f = \frac{9}{5}t_c + 32</td>
<td>T_c = t_c + 273</td>
<td>T_f = \frac{9}{5}(t_f + 273)</td>
</tr>
<tr>
<td>t_c = \frac{5}{2}T_c - 273</td>
<td>T_c = \frac{6}{5}t_c</td>
<td>T_c = \frac{6}{5}(t_c + 255)</td>
<td></td>
</tr>
</tbody>
</table>
TOLERANCE ZONES TO ISO/R 286

(DIN 7150, 7151, 7152, 7154, 7155)

<table>
<thead>
<tr>
<th>Tolerance Zone</th>
<th>Dimensional Value</th>
<th>Tolerance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1 H 13</td>
<td>+0.140 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>1,6 H 13</td>
<td>+0.140 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>2,5 H 12</td>
<td>+0.100 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>2,7 H 12</td>
<td>+0.100 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>3 H 9</td>
<td>+0.025 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>3 H 12</td>
<td>+0.100 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>3 N 9</td>
<td>-0.004 / -0.029 mm</td>
<td></td>
</tr>
<tr>
<td>3 P 8</td>
<td>-0.006 / -0.020 mm</td>
<td></td>
</tr>
<tr>
<td>3 P 9</td>
<td>-0.006 / -0.031 mm</td>
<td></td>
</tr>
<tr>
<td>3 P 10</td>
<td>-0.006 / -0.046 mm</td>
<td></td>
</tr>
<tr>
<td>3,1 JS 10</td>
<td>+0.024 / -0.024 mm</td>
<td></td>
</tr>
<tr>
<td>3,5 H 12</td>
<td>+0.120 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>3,6 H 11</td>
<td>+0.075 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>4 C 10</td>
<td>+0.118 / -0.070 mm</td>
<td></td>
</tr>
<tr>
<td>4 h 6</td>
<td>0 / -0.008 mm</td>
<td></td>
</tr>
<tr>
<td>4 h 8</td>
<td>0 / -0.018 mm</td>
<td></td>
</tr>
<tr>
<td>4 h 9</td>
<td>0 / -0.030 mm</td>
<td></td>
</tr>
<tr>
<td>4 h 10</td>
<td>0 / -0.048 mm</td>
<td></td>
</tr>
<tr>
<td>4 h 11</td>
<td>0 / -0.075 mm</td>
<td></td>
</tr>
<tr>
<td>4 H 12</td>
<td>+0.120 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>4 P 9</td>
<td>-0.012 / -0.042 mm</td>
<td></td>
</tr>
<tr>
<td>4,1 h 10</td>
<td>0 / -0.048 mm</td>
<td></td>
</tr>
<tr>
<td>4,1 H 11</td>
<td>+0.075 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>4,2 H 7</td>
<td>+0.012 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>4,2 H 12</td>
<td>+0.120 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>4,5 H 13</td>
<td>+0.180 / 0 mm</td>
<td></td>
</tr>
<tr>
<td>5 c 11</td>
<td>-0.070 / -0.145 mm</td>
<td></td>
</tr>
<tr>
<td>5 h 6</td>
<td>0 / -0.008 mm</td>
<td></td>
</tr>
<tr>
<td>5 h 9</td>
<td>0 / -0.030 mm</td>
<td></td>
</tr>
<tr>
<td>5 h 10</td>
<td>0 / -0.048 mm</td>
<td></td>
</tr>
<tr>
<td>5 h 12</td>
<td>0 / -0.120 mm</td>
<td></td>
</tr>
<tr>
<td>5 P 9</td>
<td>-0.012 / -0.042 mm</td>
<td></td>
</tr>
</tbody>
</table>

TOLERANCE ZONES

![Graph of Tolerance Zones and Load-Moment Curve](image)
CHARACTERISTIC CURVES

<table>
<thead>
<tr>
<th>CR</th>
<th>Continuous running</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO</td>
<td>Short operation</td>
</tr>
<tr>
<td>VSO</td>
<td>Very short operation</td>
</tr>
<tr>
<td>P</td>
<td>Power in W</td>
</tr>
<tr>
<td>P_{2N}</td>
<td>Nominal output power in W</td>
</tr>
<tr>
<td>P_{2max}</td>
<td>Maximum output power in W</td>
</tr>
<tr>
<td>P_{VSO}</td>
<td>Output power for short operation in W</td>
</tr>
<tr>
<td>M</td>
<td>Torque inNm</td>
</tr>
<tr>
<td>M_{A}</td>
<td>Starting torque inNm</td>
</tr>
<tr>
<td>M_{N}</td>
<td>Nominal output torque inNm</td>
</tr>
<tr>
<td>M_{VSO}</td>
<td>Output torque for very short operation inNm</td>
</tr>
<tr>
<td>n</td>
<td>Rotational speed in min⁻¹</td>
</tr>
</tbody>
</table>

RANGE OF OPERATION

- **Continuous running**
- **Short operation**
- **Very short operation**

IMPORTANT EXPLANATORY INFORMATION

- \(n_0 \): No-load speed in min⁻¹
- \(n_N \): Rated speed in min⁻¹
- \(n_{VSO} \): Speed for very short operation in min⁻¹
- \(I \): Current in A
- \(I_0 \): No-load current in A
- \(I_A \): Starting current in A
- \(I_N \): Rated current in A
- \(I_{VSO} \): Current for very short operation in A
- \(\eta \): Efficiency in %
- \(\eta_N \): Rated efficiency in %
- \(\eta_{VSO} \): Efficiency for very short operation in %

![Characteristics Curves Diagram](image_url)
TECHNICAL DESCRIPTION

Motorhousing: sheet metal, rolled & corrosion protected
Excitation field: permanent magnet
Type of gear mesh: –
Gear housing: –
Gear wheel material: –
Lubrication: –
Mechanical interface: steel shaft
Electric interface: connector or leads with connector
Sensor: optional
Thermal protection: optional
EMC suppression: optional

INDUSTRIAL APPLICATION
Linear drives, machine construction

AUTOMOTIVE APPLICATION
Seat track drive
Series GMP

Motor type 402 944

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 0.08</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 2,700.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 16.2</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 2.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**:
- **Gear wheel material**:
- **Suppression components**: 7.5µH
- **Enclosure class**: IP 30
- **Weight [kg]**: 0.550

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Motor picture](image-url)

![Output shaft drawing](image-url)

![Wiring diagrams](image-url)

![Connector layout](image-url)
Series GMP

Motor type 403 187

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Ball - B:Ball

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 0.08$
- No-load speed [min$^{-1}$]: $n_0 = 2,800.0$
- Nominal power [W]: $P_N = 17.6$
- Nominal current [A]: $I_N = 1.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_3

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio
- Gear wheel material
- Suppression components: 7.5µH, 47nF
- Enclosure class: IP 30
- Weight [kg]: 0.550

Remarks:

Characteristic curves

- [Graph of characteristic curves](#)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series GMP
Motor type 404 476

Design Data

<table>
<thead>
<tr>
<th>Design Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Sleeve - B:Sleeve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 0.05</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 3,250.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 14.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Sensor data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>2</td>
</tr>
<tr>
<td>Output channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Other data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td></td>
</tr>
<tr>
<td>Gear wheel material</td>
<td></td>
</tr>
<tr>
<td>Suppression components</td>
<td>7.5µH</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.520</td>
</tr>
</tbody>
</table>

Remarks:

Characteristics curves

Output data:

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 256

S 82

S 92

Remarks:

I Tapered splines 5 x 6 DIN 5481
II Terminal 1, green
II Terminal 2, black
II Terminal 3, +, red
II Terminal 4, -, brown
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 211

I Terminal 1, motor, green
II Terminal 2, motor, black
III Terminal 3, Hall-IC +, red
IV Terminal 4, Hall-IC -, brown

Notes
Series GMP
Motor type 404 743

Design Data

- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

0220 F

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s³</td>
</tr>
</tbody>
</table>

Sensor Data

- Pulses: 0
- Output channels: 0

Other Data

- Gear ratio
- Gear wheel material
- Suppression components: 2.5µH, 47nF ()
- Enclosure class: IP 40
- Weight [kg]: 0.560

Remarks:

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **W 266**
- **W 267**
- **S 93**
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com

Notes
Series GMP
Motor type 404 744

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data
- Rated voltage [V]: U_N = 12
- Nominal torque [Nm]: M_N = 0.10
- No-load speed [min^-1]: n_0 = 2,700.0
- Nominal power [W]: P_N = 21.2
- Nominal current [A]: I_N = 4.5
- Nominal force [kN]: F_N = 0.00
- Duty cycle: s_3

Sensor data
- Pulses: 1
- Output channels: 1

Other data
- Gear ratio
- Gear wheel material
- Suppression components: 2.5µH, 47nF
- Enclosure class: IP 40
- Weight [kg]: 0.560

Remarks:
- Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 266

W 267

S 86
Series GMP
Motor type 404 744

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

<table>
<thead>
<tr>
<th>Terminal 4, Hall-IC +</th>
<th>Terminal 2, Hall-IC -</th>
</tr>
</thead>
</table>
| Connector TYCO C-208-15621 (Z) mating with:
 Connector housing 1379217-3 & cover 1379218-2
 www.tycoelectronics.com |
Notes

- **Terminal 4**, Hall-IC +
- **Terminal 2**, Hall-IC -
- Connector TYCO C-208-15621 (Z) mating with:
 - Connector housing 1379217-3 & cover 1379218-2

Visit www.tycoelectronics.com for more details.

Series GMP

Motor type 404 744

Series GMPI

Motor type 404 722

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **Terminal 1**, motor, violet
- **Terminal 2**, motor, blue
TECHNICAL DESCRIPTION

Motorhousing: deep drawn & corrosion protected
Excitation field: permanent magnet
Type of gear mesh: –
Gear housing: –
Gear wheel material: –
Lubrication: grease
Mechanical interface: steel shaft
Electric interface: leads with connector
Sensor: optional
Thermal protection: optional
EMC suppression: optional

INDUSTRIAL APPLICATION
Linear drives

AUTOMOTIVE APPLICATION
Electric torque management,
Automated manual transmission
Series GMK
Motor type 404 284

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 0.19$
- No-load speed [min$^{-1}$]: $n_0 = 3,100.0$
- Nominal power [W]: $P_N = 52.7$
- Nominal current [A]: $I_N = 5.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio
- Gear wheel material
- Suppression components: 5µH
- Enclosure class: IP 30
- Weight [kg]: 0.900

Remarks: 1 start worm

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

- no of starts 1, lead angle 9°, pressure angle 10°, module 1, pitch 3.14159 mm (0.124")
- Blade terminal receptacles 2.8 x 0.8 DIN 46 247
- green
- red
Series GMK
Motor type 404 382

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Sleeve - B:Sleeve

Performance Data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 0.12</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 5,250.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 58.8</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 0
- **Output channels**: 0

Other Data
- **Gear ratio**
- **Gear wheel material**
- **Suppression components**: 5µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 0.900

Remarks:
- **Motor picture**
- **Characteristic curves**
- **Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)**

Gear wheel material
- Receptacles for tabs 2,8 x 0,8 DIN 46 247
- black
- red
Design Data

- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

- **Pulses**: 0
- **Output channels**: 0

Other data

- **Gear ratio**
- **Gear wheel material**
- **Suppression components**: 5µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 0.900

Remarks

- 4 start worm

Characteristic curves

![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **W 218**
- **S 30**
- **K 189**

- **no. of starts**: 4
- **Lead angle**: 30°31’35”, pressure angle: 15°, pitch: 11.6707 mm (0.459”), module: 0.8
- **Receptacle for tabs**: 2.8 x 0.8 DIN 46 247
- **red**
- **black**
Series GMK
Motor type 404 753

Design Data
Commutation Brushed
Direction of rotation Bi-directional
Bearing type A:Ball - B:Sleeve

Performance data
Rated voltage [V] U_N 12
Nominal torque [Nm] M_N 0.35
No-load speed [min$^{-1}$] n_0 3,000.0
Nominal power [W] P_N 79.2
Nominal current [A] I_N 9.0
Nominal force [kN] F_N 0.00
Duty cycle ±3

Sensor data
Pulses 0
Output channels 0

Other data
Gear ratio
Gear wheel material
Suppression components 5µH, 10nF
Enclosure class IP 30
Weight [kg] 0.900

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Receptacles for tabs 2.8 x 0.8 DIN 46 247
black
red
Series GMK
Motor type 404 757

Design Data
Commutation: Brushed
Direction of rotation: Bi-directional
Bearing type: A:Ball - B:Sleeve

Performance data
Rated voltage [V] \(U_N \): 24
Nominal torque [Nm] \(M_N \): 0.30
No-load speed [min\(^{-1}\)] \(n_0 \): 2,200.0
Nominal power [W] \(P_N \): 53.2
Nominal current [A] \(I_N \): 3.0
Nominal force [kN] \(F_N \): 0.00
Duty cycle \(s_1 \)

Sensor data
Pulses: 0
Output channels: 0

Other data
Gear ratio
Gear wheel material
Suppression components: 5µH, 10nF
Enclosure class: IP 30
Weight [kg]: 0.890

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

no of starts 2, lead angle 19°48’54”, pressure angle 15°, pitch 3,141 mm (0,124”), module 1

II black
III red
Series GMK
Motor type 404 880

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A: Ball - B: Sleeve

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 0.15$
- No-load speed [min$^{-1}$]: $n_0 = 2200.0$
- Nominal power [W]: $P_N = 30.9$
- Nominal current [A]: $I_N = 2.5$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio
- Gear wheel material
- Suppression components: $5\mu H$
- Enclosure class: IP 30
- Weight [kg]: 0.900

Remarks: 3 start worm

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 300
- No of starts: 3
- Lead angle: 30°33'44"
- Pressure angle: 15°
- Module: 1
- Pitch: 3.141 mm (0.124")

S 27
- Receptacle for tabs 2.8 x 0.8 DIN 46 247
- Green

K 264
- Red
Series GMK
Motor type 404 880

Design Data
- Performance data
 - Commutation: Brushed
 - Rated voltage \([\text{V}]\) UN 24
 - Direction of rotation: Bi-directional
 - Nominal torque \([\text{Nm}]\) MN 0.15
 - Bearing type:
 - A: Ball
 - B: Sleeve
 - No-load speed \([\text{min}^{-1}]\) \(n_0\) 2,200.0
 - Nominal power \([\text{W}]\) PN 30.9
 - Nominal current \([\text{A}]\) IN 2.5
 - Nominal force \([\text{kN}]\) FN 0.00
 - Duty cycle \(s_1\)

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio
- Gear wheel material
- Suppression components: 5µH
- Enclosure class: IP 30
- Weight \([\text{kg}]\) 0.900
- Remarks: 3 start worm

Notes

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I
- Terminal 1, motor, violet

II
- Terminal 2, motor, blue

III
- Receptacle for tabs 2,8 x 0,8 DIN 46 247

24 Drive Technology 2011/12
Motorhousing: deep drawn & corrosion protected
Excitation field: permanent magnet
Type of gear mesh: –
Gear housing: –
Gear wheel material: –
Lubrication: grease
Mechanical interface: steel shaft
Electric interface: leads with connector
Sensor: –
Thermal protection: optional
EMC suppression: optional

→ INDUSTRIAL APPLICATION
Linear drives

→ AUTOMOTIVE APPLICATION
Electric torque management,
Automated manual transmission
Series GML
Motor type 404 469

Design Data

<table>
<thead>
<tr>
<th>Commutation</th>
<th>Brushed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: Ball - B: Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Rated voltage [V]</th>
<th>U_N</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>0.20</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
<td>4,100.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>79.7</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>3.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data

| Pulses | 0 |
| Output channels | 0 |

Other data

| Gear ratio |
Suppression components	5µH, 10nF
Enclosure class	IP 30
Weight [kg]	1.150

Remarks:

Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Design Data

<table>
<thead>
<tr>
<th>Design Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: Ball - B: Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Performance data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Sensor data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Other data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td></td>
</tr>
<tr>
<td>Gear wheel material</td>
<td></td>
</tr>
<tr>
<td>Suppression components</td>
<td>5μH, 10nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.150</td>
</tr>
</tbody>
</table>

Remarks:

- Motor picture
- Characteristic curves
- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Electrical Characteristics

- 0273 A
- 404 536

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 233
- no of starts: 2, lead angle: $19°48'54''$,
- pressure angle: $15°$,
- module: 1,
- pitch: 3.141 mm ($0.124''$)

S 30
- Receptacles for tabs: 2.8 x 0.8 DIN 46 247
 - I. black
 - II. red

K 190
- I. Receptacles for tabs: 2.8 x 0.8 DIN 46 247
 - II. black
 - III. red
Series GML
Motor type 404 596

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Ball - B:Sleeve

Performance data
- Rated voltage [V]: $U_N = 12$
- Nominal torque [Nm]: $M_N = 0.20$
- No-load speed [min$^{-1}$]: $n_0 = 3,750.0$
- Nominal power [W]: $P_N = 67.3$
- Nominal current [A]: $I_N = 7.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio
- Gear wheel material
- Suppression components: 5µH, 10nF
- Enclosure class: IP 30
- Weight [kg]: 1.150

Remarks:
- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Characteristics curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

no of starts 2, lead angle 19°48'54", pressure angle 15°, module 1, pitch 3.141 mm (0,124")

Receptacles for tabs 2,8 x 0,8 DIN 46 247
- I: black
- II: red
Series GML
Motor type 404 621

Design Data

<table>
<thead>
<tr>
<th>Commutation</th>
<th>Brushed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: Ball - B: Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>Gearless</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td></td>
</tr>
<tr>
<td>Suppression components</td>
<td>5.0µH</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.150</td>
</tr>
</tbody>
</table>

Remarks:

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series GML
Motor type 404 890

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A: Ball - B: Sleeve

Performance Data
<table>
<thead>
<tr>
<th></th>
<th>U_N</th>
<th>M_N</th>
<th>n_0</th>
<th>P_N</th>
<th>I_N</th>
<th>F_N</th>
<th>s_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>24</td>
<td>0.50</td>
<td>2,500</td>
<td>96.5</td>
<td>7.0</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td></td>
<td></td>
<td>2,500.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td></td>
<td></td>
<td></td>
<td>96.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s1</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 0
- **Output channels**: 0

Other Data
- **Gear ratio**: Gearless
- **Gear wheel material**:
- **Suppression components**: 5.0µH, 1nF
- **Enclosure class**: IP30
- **Weight [kg]**: 1.150

Remarks:
- Motor picture
- Characteristic curves
- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **S 74**:
 - I: Receptacles for tabs 2,8 x 0,8 DIN 46 247
 - II: black
 - III: red

- **K 190**:
 - (I)
 - (II)
Series GML
Motor type 404 965

Design Data

Commutation
Brushed

Direction of rotation
Bi-directional

Bearing type
A: Ball - B: Sleeve

Performance data

Rated voltage [V] U_N
24

Nominal torque [Nm] M_N
0.30

No-load speed [min⁻¹] n_0
3,800.0

Nominal power [W] P_N
105

Nominal current [A] I_N
5.0

Nominal force [kN] F_N
0.00

Duty cycle s_1

Sensor data

Pulses
0

Output channels
0

Other data

Gear ratio

Gear wheel material

Suppression components
5µH, 10nF

Enclosure class
IP 30

Weight [kg]
1.100

Remarks:

-Motor picture

-Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- W 325
- S 74
- K 317

-no of starts 7, lead angle 20°, pressure angle 20°, module 0.7, pitch 2.1991 mm (0.087")
induction hardened surface

Receptacle for tabs 6.3 x 0.8
G&H 35040.213.011

-red
green
Series GML

Motor type 404 966

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**:
- **Gear wheel material**:
- **Suppression components**: 5µH, 10nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.100

Remarks:
- Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **W 325**
- **S 74**
- **K 317**

Notes:
- no of starts 7, lead angle 20°, pressure angle 20°, module 0.7, pitch 2.1991 mm (0.087"), induction hardened surface,
- Receptacle for tabs 6.3 x 0.8
- G&H 35940.213.011
- red
- green
Series GML
Motor type 404 967

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A: Ball - B: Sleeve

Performance data
- Rated voltage [V]: $U_N = 36$
- Nominal torque [Nm]: $M_N = 0.30$
- No-load speed [min⁻¹]: $n_0 = 3,900.0$
- Nominal power [W]: $P_N = 109$
- Nominal current [A]: $I_N = 7.5$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_3

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio
- Gear wheel material
- Suppression components: $5 \mu H, 10 \mu F$
- Enclosure class: IP 30
- Weight [kg]: 1.100

Remarks:
- Motor picture
- Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

G&M 39040.213.01
I II III
- Receptacle for tabs 6,3 x 0,8
- red
- green

no of starts 7, lead angle 20°, pressure angle 20°, module 0,7, pitch 2,1991 mm (0,087”), induction hardened surface,
Series GML
Motor type 404 967

Design Data Performance data
Commutation Brushed Rated voltage [V] UN 36
Direction of rotation Bi-directional Nominal torque [Nm] MN 0.30
Bearing type A: Ball - B: Sleeve No-load speed [min⁻¹] n₀ 3,900.0
Nominal power [W] PN 109
Nominal current [A] IN 7.5
Nominal force [kN] FN 0.00
Duty cycle s³
Sensor data
Pulses 0
Output channels 0
Other data
Gear ratio
Gear wheel material
Suppression components 5µH, 10nF
Enclosure class IP 30
Weight [kg] 1.100
Remarks:
Motor picture Characteristic curves
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Notes

I
Terminal 1, motor, violet

II
Terminal 2, motor, blue

III
red
green

34 Drive Technology 2011/12
NIDEC MOTORS & ACTUATORS

0202 (GMAG)

TECHNICAL DESCRIPTION

Motorhousing: sheet metal, rolled & corrosion protected
Excitation field: permanent magnet
Type of gear mesh: spur gear
Gear housing: plastic
Gear wheel material: steel or plastic
Lubrication: grease
Mechanical interface: steel shaft
Electric interface: tinned leads or with connector
Sensor: optional
Thermal protection: optional
EMC suppression: optional

APPLICATION

Automatic machines, Constructional engineering
Business machines, Laboratory appliances
Medical appliances, Traffic & communications technology, Photographic/optical equipment
Design Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
</tbody>
</table>

Performance Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 0.24</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 17.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 0.37</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 0.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
</tr>
</tbody>
</table>

Sensor Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>109/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td></td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Remarks:

- Characteristic curves

Motor picture

![Motor picture](image_url)

- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Output shaft drawing](image_url)

![Wiring diagram](image_url)

![Connector layout](image_url)
Series GMAG
Motor type 402 781

Design Data
Commutation | Brushed
Direction of rotation | Bi-directional
Bearing type

Performance data
Rated voltage [V] | U_N 24
Nominal torque [Nm] | M_N 0.50
No-load speed [min$^{-1}$] | n_0 55.0
Nominal power [W] | P_N 2.56
Nominal current [A] | I_N 0.5
Nominal force [kN] | F_N 0.00
Duty cycle | s_3

Sensor data
Pulses | 0
Output channels | 0

Other data
Gear ratio | 109/1
Gear wheel material
Suppression components
Enclosure class | IP40
Weight [kg] | 0.180

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series GMAG
Motor type 402 907

Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td></td>
</tr>
</tbody>
</table>

Performance Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 0.04</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 300.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 1.07</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 0.2</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>ε_3</td>
</tr>
</tbody>
</table>

Sensor Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>9.7/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td></td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Remarks:

Motor picture

- [Motor picture]

Characteristic curves

- [Characteristic curves]

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- [Output shaft drawing (W)]
- [Wiring diagrams (S)]
- [Connector layout (K)]

Connector Burndy

<table>
<thead>
<tr>
<th>Pins</th>
<th>Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWM 1EF TV2</td>
<td>SMS 2p-1</td>
</tr>
</tbody>
</table>

37
Series GMAG
Motor type 404 326

Design Data

<table>
<thead>
<tr>
<th>Design Data</th>
<th>Performance data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Rated voltage [V]</td>
</tr>
<tr>
<td>Bi-directional</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Nominal torque [Nm]</td>
</tr>
<tr>
<td></td>
<td>M_N 0.20</td>
</tr>
<tr>
<td>Bearing type</td>
<td>No-load speed [min⁻¹]</td>
</tr>
<tr>
<td></td>
<td>n_0 135.0</td>
</tr>
<tr>
<td></td>
<td>Nominal power [W]</td>
</tr>
<tr>
<td></td>
<td>P_N 2.26</td>
</tr>
<tr>
<td></td>
<td>Nominal current [A]</td>
</tr>
<tr>
<td></td>
<td>I_N 0.3</td>
</tr>
<tr>
<td></td>
<td>Nominal force [kN]</td>
</tr>
<tr>
<td></td>
<td>F_N 0.00</td>
</tr>
<tr>
<td></td>
<td>Duty cycle s_3</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Sensor data</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>Gear ratio 43/1</td>
</tr>
<tr>
<td>Output channels</td>
<td>Gear wheel material</td>
</tr>
<tr>
<td></td>
<td>Suppression components</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Other data</th>
<th>Characteristic curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure class</td>
<td>Housing: AMP-Nr.: 1-480 700-0</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>Pins: AMP-Nr.: 350 570-1</td>
</tr>
<tr>
<td></td>
<td>I: black</td>
</tr>
<tr>
<td></td>
<td>II: yellow/green</td>
</tr>
<tr>
<td></td>
<td>III: red</td>
</tr>
</tbody>
</table>

Remarks:

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series GMAG

Motor type 404 327

Design Data

- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>0.50</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>65.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>2.84</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>0.4</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Data

- **Pulses**: 0
- **Output channels**: 0

Other Data

- **Gear ratio**: 109/1
- **Gear wheel material**
- **Suppression components**
- **Enclosure class**: IP40
- **Weight [kg]**: 0.180

Remarks:

- Motor picture

Characteristic curves

- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Housing: AMP-Nr. 1-480 700-0

Pins: AMP-Nr. 350 687-1
TECHNICAL DESCRIPTION

- **Motorhousings:** sheet metal, rolled & corrosion protected
- **Excitation field:** permanent magnet
- **Type of gear mesh:** spur gear
- **Gear housing:** plastic
- **Gear wheel material:** plastic
- **Lubrication:** grease
- **Mechanical interface:** steel shaft
- **Electric interface:** connector or leads with connector
- **Sensor:** optional
- **Thermal protection:** optional
- **EMC suppression:** optional

INDUSTRIAL APPLICATION
Linear actuators, home automation

AUTOMOTIVE APPLICATION
Spoiler adjustment
Series GMPI
Motor type 404 465

Design Data
Commutation: Brushed
Direction of rotation: Bi-directional
Bearing type: A:Sleeve - B:Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>4.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
<td>210.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>72.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>7.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s₃</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data
Pulses: 0
Output channels: 0

Other data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>39.7/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>7.5µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.630</td>
</tr>
</tbody>
</table>

Remarks: $d = 3.3 \text{mm}$, for selftapping screw 4mm (shape Remform)

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 268
S 30
K 117

I Blade terminal ends 4.8 x 0.8 DIN 46 244
II Blade terminal ends 6.3 x 0.8 DIN 46 244
Design Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Sleeve - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
</tr>
</tbody>
</table>

Sensor Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>20</td>
</tr>
<tr>
<td>Output channels</td>
<td>2</td>
</tr>
</tbody>
</table>

Other Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>20/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>4µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.750</td>
</tr>
</tbody>
</table>

Remarks: $d = 3.3\text{mm}$, for self-cutting screw 4mm (shape Remform)

Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 249

S 30

S 109

I Terminal 1, OUT A1, grey
II Terminal 2, OUT A2, black
III Terminal 3, +, white
IV Terminal 4, -, red
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 244

Crimp housing 0009501061 (3.06mm, 0.156"),
Crimp terminals 008701031 mating with PCB headers 0026481066
1 grey encoder out ch1, 2 black encoder out ch2, 3 white encoder +, 4 red encoder -, 5 violet motor, 6 blue motor
www.molex.com

Notes
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: sleeve bearing

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 4.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 200.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 69.8</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 8.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_2</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 39
- **Output channels**: 2

Other Data
- **Gear ratio**: 39.7/1
- **Gear wheel material**: plastic
- **Suppression components**: 4.0µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 0.650
- **Remarks**: $d = 3.3$mm, for self-cutting screw 4mm

Characteristic curves

![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 249

S 30

S 109

- Terminal 1, OUT A1, grey
- Terminal 2, OUT A2, black
- Terminal 3, +, white
- Terminal 4, -, red
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 216

I Terminal 1, motor, violet
II Terminal 2, motor, blue

Notes
Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>10.0</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
<td>40.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>34.4</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>8.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 116
- Output channels: 1

Other data
- Gear ratio: 116/1
- Gear wheel material: plastic
- Suppression components: 2.5µH, 47nF, ()
- Enclosure class: IP 30
- Weight [kg]: 0.800

Remarks:
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com

Notes
TECHNICAL DESCRIPTION

Motorhousing: sheet metal, rolled & corrosion protected
Excitation field: permanent magnet
Type of gear mesh: combination of worm and spur gear
Gear housing: plastic
Gear wheel material: plastic
Lubrication: grease
Mechanical interface: hollow shaft with profile
Electric interface: connector or leads with connector
Sensor: optional
Thermal protection: optional
EMC suppression: optional

INDUSTRIAL APPLICATION
Machine construction

AUTOMOTIVE APPLICATION
Seat Recline Adjustment
Series GMPD
Motor type 404 682

<table>
<thead>
<tr>
<th>Design Data</th>
<th>Performance data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Rated voltage [V]</td>
</tr>
<tr>
<td>Brushed</td>
<td>U_N</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Nominal torque [Nm]</td>
</tr>
<tr>
<td>Bi-directional</td>
<td>M_N</td>
</tr>
<tr>
<td>Bearing type</td>
<td>No-load speed [min$^{-1}$]</td>
</tr>
<tr>
<td>A:Sleeve - B:Sleeve</td>
<td>n_0</td>
</tr>
<tr>
<td></td>
<td>Nominal power [W]</td>
</tr>
<tr>
<td></td>
<td>P_N</td>
</tr>
<tr>
<td></td>
<td>Nominal current [A]</td>
</tr>
<tr>
<td></td>
<td>I_N</td>
</tr>
<tr>
<td></td>
<td>Nominal force [kN]</td>
</tr>
<tr>
<td></td>
<td>F_N</td>
</tr>
<tr>
<td></td>
<td>Duty cycle</td>
</tr>
<tr>
<td></td>
<td>s_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Output channels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>210/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>7.5µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.440</td>
</tr>
</tbody>
</table>

Remarks:

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Other data

Gear ratio 210/1
Gear wheel material plastic
Suppression components 7.5µH, 1nF
Enclosure class IP 40
Weight [kg] 0.440
Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Other data

Gear ratio 210/1
Gear wheel material plastic
Suppression components 7.5µH, 1nF
Enclosure class IP 40
Weight [kg] 0.440
Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Other data

Gear ratio 210/1
Gear wheel material plastic
Suppression components 7.5µH, 1nF
Enclosure class IP 40
Weight [kg] 0.440
Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series GMPD
Motor type 404 747

Design Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: Sleeve - B: Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 3.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 21.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 5.59</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>210/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>$5.5\mu H, 47nF, (0.47\mu F)$</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.440</td>
</tr>
</tbody>
</table>

Remarks:

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Characteristics Curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 270

S 93

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2

www.tycoelectronics.com
Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>3.00</td>
</tr>
<tr>
<td>No-load speed [min(^{-1})]</td>
<td>n_0</td>
<td>21.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>5.59</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>3.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 210
- Output channels: 1

Other data
- Gear ratio: 210/1
- Gear wheel material: plastic
- Suppression components: 5.5\(\mu\)H, 47nF, (0.47\(\mu\)F)
- Enclosure class: IP 40
- Weight [kg]: 0.440

Remarks:
- Motor picture
- Characteristic curves
- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoontronics.com

Notes
Series GMPD
Motor type 404 764

Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Sleeve - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 4.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 22.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 7.54</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 1.8</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s3</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>210/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>7.5µH, 47nF, (0.47µF)</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.440</td>
</tr>
</tbody>
</table>

Remarks:

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Characteristics curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I through Profile KRC 316928 AEIZ 01
II Terminal 1, black
III Terminal 2, blue

Tap housing 365007-1, timer contacts 928781-5
Mating with receptacle housing 365005-1,
timer contacts 927788-1
1 black motor, 2 blue motor

53
Series GMPD
Motor type 404 904

Design Data
- **Commutation:** Brushed
- **Direction of rotation:** Bi-directional
- **Bearing type:** A:Sleeve - B:Sleeve

Performance Data
- **Rated voltage [V]:** U_N 12
- **Nominal torque [Nm]:** M_N 2.00
- **No-load speed [min$^{-1}$]:** n_0 21.0
- **Nominal power [W]:** P_N 3.95
- **Nominal current [A]:** I_N 3.0
- **Nominal force [kN]:** F_N 0.00
- **Duty cycle:** s_3

Sensor Data
- **Pulses:** 0
- **Output channels:** 0

Other Data
- **Gear ratio:** 210/1
- **Gear wheel material:** plastic
- **Suppression components:** 5.5µH, 47nF
- **Enclosure class:** IP 40
- **Weight [kg]:** 0.440

Remarks:
- Motor picture
- Characteristic curves
- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Connector Information
- **Connector TYCO C-208-15621 (Z) mating with:**
 - Connector housing 1379217-3 & cover 1379218-2
 - www.tycoelectronics.com

54 Drive Technology 2011/12
Series GMPD
Motor type 404 905

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data
- Rated voltage [V] \(U_N \): 12
- Nominal torque [Nm] \(M_N \): 2.00
- No-load speed [min⁻¹] \(n_0 \): 21.0
- Nominal power [W] \(P_N \): 3.95
- Nominal current [A] \(I_N \): 3.0
- Nominal force [kN] \(F_N \): 0.00
- Duty cycle \(s_2 \)

Sensor data
- Pulses: 210
- Output channels: 1

Other data
- Gear ratio: 210/1
- Gear wheel material: plastic
- Suppression components: 5.5µH, 47nF
- Enclosure class: IP 40
- Weight [kg]: 0.440

Remarks:
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Characteristic curves

![Motor picture](image)

![Output shaft drawing](image)

![Wiring diagrams](image)

1. through Profile KRC 316928 AEIZ 01
2. Terminal 1
3. Terminal 5
4. Terminal 4; Hall-IC +
5. Terminal 2; Hall-IC -
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com

Notes
Series GMPD
Motor type 404 907

Design Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>0320 BR</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>T_N 2.00</td>
</tr>
<tr>
<td>No-load speed [min^-1]</td>
<td>n_0 21.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 3.92</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>210</td>
</tr>
<tr>
<td>Output channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>210/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.440</td>
</tr>
</tbody>
</table>

Remarks: Plastic gearbox

Other data

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>210/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.440</td>
</tr>
</tbody>
</table>

Remarks: Plastic gearbox

Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Output shaft drawing (W)

W 224

Output shaft drawing (W)

Output shaft drawing (W)

Output shaft drawing (W)

Wiring diagrams (S)

S 138

Wiring diagrams (S)

S 140
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com

Notes
Series GMPD
Motor type 404 980

Design Data

<table>
<thead>
<tr>
<th>Commutation</th>
<th>Brushed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Sleeve - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Rated voltage [V]</th>
<th>U_N 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 2.00</td>
</tr>
<tr>
<td>No-load speed [min^-1]</td>
<td>n_0 22.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 4.10</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s3</td>
</tr>
</tbody>
</table>

Sensor data

| Pulses | 0 |
| Output channels | 0 |

Other data

Gear ratio	210/1
Gear wheel material	plastic
Suppression components	7.5µH, 1nF
Enclosure class	IP40
Weight [kg]	0.440

Remarks:

Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Terminal 1
Terminal 5
Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com
Series GMPD

Motor type 405 031

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Sleeve - B-Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s3</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 210
- **Output channels**: 1

Other data
- **Gear ratio**: 210/1
- **Gear wheel material**: plastic
- **Suppression components**: 5.5µH, 47nF
- **Enclosure class**: IP 40
- **Weight [kg]**: 0.000

Remarks:

Characteristic curves

![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

![Motor picture](image)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com
Series GMPD
Motor type 405 061

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 2.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 21.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 3.95</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>δ 3</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 210
- **Output channels**: 2

Other data
- **Gear ratio**: 210/1
- **Gear wheel material**: plastic
- **Suppression components**: 5.5µH, 47nF
- **Enclosure class**: IP 40
- **Weight [kg]**: 0.000

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Sleeve - B:Sleeve

Motor picture

Characteristics

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1. Through Profile KRC 316928 AEIZ 01
2. Terminal 1
3. Terminal 5
K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover
1379218-2
www.tycoelectronics.com
Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data
- Rated voltage \([V]\): \(U_N\) 24
- Nominal torque \([Nm]\): \(M_N\) 4.00
- No-load speed \([\text{min}^{-1}]\): \(n_0\) 20.0
- Nominal power \([W]\): \(P_N\) 6.70
- Nominal current \([A]\): \(I_N\) 2.0
- Nominal force \([kN]\): \(F_N\) 0.00
- Duty cycle \(s_3\)

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 246.75/1
- Gear wheel material: plastic
- Suppression components: 7.5\(\mu\), 47nF
- Enclosure class: IP 40
- Weight \([kg]\): 0.440

Remarks:
- Motor picture
- Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- Motor picture
- Characteristic curves

Series GMPD

Motor type 405 228

Features:
- **Rated voltage:** \(U_N\) 24 V
- **Nominal torque:** \(M_N\) 4.00 Nm
- **No-load speed:** \(n_0\) 20.0 rpm
- **Nominal power:** \(P_N\) 6.70 W
- **Nominal current:** \(I_N\) 2.0 A
- **Nominal force:** \(F_N\) 0.00 kN

Performance Data

- **Bearing Type:** A:Sleeve - B:Sleeve
- **No-load Speed:** \(n_0\) 20.0 rpm
- **Nominal Torque:** \(M_N\) 4.00 Nm
- **Rated Voltage:** \(U_N\) 24 V
- **Nominal Power:** \(P_N\) 6.70 W
- **Nominal Current:** \(I_N\) 2.0 A
- **Nominal Force:** \(F_N\) 0.00 kN

Sensor Data
- **Pulses:** 0
- **Output Channels:** 0

Other Data
- **Gear Ratio:** 246.75/1
- **Gear Wheel Material:** Plastic
- **Suppression Components:** 7.5\(\mu\), 47nF
- **Enclosure Class:** IP 40
- **Weight:** 0.440 kg

Motor Picture

- **Output Shaft Drawing (W)**
- **Wiring Diagrams (S)**
- **Connector Layout (K)**

Motor Specifications

- **Commutation:** Brushed
- **Direction of Rotation:** Bi-directional
- **Bearing Type:** A:Sleeve - B:Sleeve

Output Shaft Drawing

- **W 224**
- **S 74**
- **K 227**

Interchange Information

- **Tap Housing:** 365057-1
- **Timer Contacts:** 928781-5
- **Mating with Receptacle Housing:** 365058-1
- **Timer Contacts:** 927768-1
- **1 Black Motor, 2 Blue Motor**
Series GMPD
Motor type 405 228

Design Data Performance data
Commutation Brushed Rated voltage [V] UN 24
Direction of rotation Bi-directional Nominal torque [Nm] MN 4.00
Bearing type A:Sleeve - B:Sleeve No-load speed [min⁻¹] n0 20.0
Nominal power [W] PN 6.70
Nominal current [A] IN 2.0
Nominal force [kN] FN 0.00
Duty cycle s3

Sensor data
Pulses 0
Output channels 0

Other data
Gear ratio 246.75/1
Gear wheel material plastic
Suppression components 7,5µ, 47nF
Enclosure class IP 40
Weight [kg] 0.440

Remarks:
Motor picture Characteristic curves
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Notes

Terminal 1, motor, violet

Terminal 2, motor, blue
TECHNICAL DESCRIPTION

- **Motorhousing:** sheet metal, rolled & corrosion protected
- **Excitation field:** permanent magnet
- **Type of gear mesh:** worm gear
- **Gear housing:** zinc die cast
- **Gear wheel material:** plastic
- **Lubrication:** grease
- **Mechanical interface:** steel shaft or hollow shaft with profile
- **Electric interface:** connector or leads with connector
- **Sensor:** optional
- **Thermal protection:** optional
- **EMC suppression:** optional

INDUSTRIAL APPLICATION

- Catering, Office machines, Furniture Adjustment, Machine Construction

AUTOMOTIVE APPLICATION

- Sunroof adjustment
Series GMPG
Motor type 404 156

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 1.00$
- No-load speed [min$^{-1}$]: $n_0 = 80.0$
- Nominal power [W]: $P_N = 7.33$
- Nominal current [A]: $I_N = 1.5$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: $s = 3$

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 62/1
- Gear wheel material: plastic
- Suppression components: optional
- Enclosure class: IP 30
- Weight [kg]: 0.610

Remarks: d=selftapping screw M5

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Gear ratio: 62/1
Gear wheel material: plastic
Enclosure class: IP 30
Weight [kg]: 0.610

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor housing: sheet metal, rolled & corrosion protected
Excitation field: permanent magnet
Type of gear mesh: worm gear
Gear housing: zinc die cast
Gear wheel material: plastic
Lubrication: grease
Mechanical interface: steel shaft or hollow shaft with profile
Electric interface: connector or leads with connector
Sensor: optional
Thermal protection: optional
EMC suppression: optional

Industrial application:
- Catering, Office machines, Furniture Adjustment, Machine Construction

Automotive application:
- Sunroof adjustment

Motor series:
- DC MOTORS WITH WORM GEAR
Series GMPG
Motor type 404 157

<table>
<thead>
<tr>
<th>Design Data</th>
<th>Performance data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Rated voltage [V]</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Nominal torque [Nm]</td>
</tr>
<tr>
<td>Bearing type</td>
<td>No-load speed [min⁻¹]</td>
</tr>
<tr>
<td>A:Sleeve - B:Sleeve</td>
<td>Nominal power [W]</td>
</tr>
<tr>
<td></td>
<td>Nominal current [A]</td>
</tr>
<tr>
<td></td>
<td>Nominal force [kN]</td>
</tr>
<tr>
<td></td>
<td>Duty cycle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor data</th>
<th>Other data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>Gear ratio</td>
</tr>
<tr>
<td>0</td>
<td>Gear wheel material</td>
</tr>
<tr>
<td>Output channels</td>
<td>Suppression components</td>
</tr>
<tr>
<td>0</td>
<td>Enclosure class</td>
</tr>
<tr>
<td></td>
<td>Weight [kg]</td>
</tr>
</tbody>
</table>

Remarks: d = for thread-forming screw M 5 DIN 7500

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- Tapered splines 7 x 8 DIN 5481 continuous
- Blade terminal ends 4.8 x 0.8 DIN 46 244
- Blade terminal ends 6.3 x 0.8 DIN 46 244
Series GMPG

Motor type 404 166

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance data
- **Rated voltage [V]**: $U_N = 12$
- **Nominal torque [Nm]**: $M_N = 0.50$
- **No-load speed [min⁻¹]**: $n_0 = 60.0$
- **Nominal power [W]**: $P_N = 2.83$
- **Nominal current [A]**: $I_N = 2.0$
- **Nominal force [kN]**: $F_N = 0.00$
- **Duty cycle**: s_1

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 62/1
- **Gear wheel material**: Plastic
- **Suppression components**
- **Enclosure class**: IP30
- **Weight [kg]**: 0.710

Remarks:

Characteristic curves

- **Output shaft drawing (W)**
- **Wiring diagrams (S)**
- **Connector layout (K)**

Output shaft drawing (W)
- **W 148**

Wiring diagrams (S)
- **S 28**
- **K 117**

1. Tapered splines 7 x 8 DIN 5481 continuous
2. Blade terminal ends 6.3 x 0.8 DIN 46 244
3. Blade terminal ends 4.8 x 0.8 DIN 46 244
Series GMPG
Motor type 404 603

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance Data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 1.00$
- No-load speed [min$^{-1}$]: $n_0 = 80.0$
- Nominal power [W]: $P_N = 7.39$
- Nominal current [A]: $I_N = 2.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_3

Sensor Data
- Pulses: 0
- Output channels: 0

Other Data
- Gear ratio: 62/1
- Gear wheel material: plastic
- Suppression components: 7.5µH, 1nF
- Enclosure class: IP30
- Weight [kg]: 0.710

Remarks: $d =$ for thread-forming screw M 5 DIN 7500

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series GMPG
Motor type 404 694

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 1.00$
- No-load speed [min⁻¹]: $n_0 = 28.0$
- Nominal power [W]: $P_N = 2.48$
- Nominal current [A]: $I_N = 1.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_2

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 72/1
- Gear wheel material: plastic
- Suppression components: 7.5µH, 1nF
- Enclosure class: IP 30
- Weight [kg]: 0.710

Remarks: d=selftapping screw M5

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 229
S 30
K 117

1. Blade terminal ends 4.8 x 0.8 DIN 46 244
2. Blade terminal ends 6.3 x 0.8 DIN 46 244
Series GMPG
Motor type 404 763

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Sleeve - B:Sleeve

Performance data
- **Rated voltage [V]**: U_N 24
- **Nominal torque [Nm]**: M_N 2.00
- **No-load speed [min$^{-1}$]**: n_0 140.0
- **Nominal power [W]**: P_N 25.1
- **Nominal current [A]**: I_N 5.0
- **Nominal force [kN]**: F_N 0.00
- **Duty cycle**: s3

Sensor data
- **Pulses**: 62
- **Output channels**: 2

Other data
- **Gear ratio**: 62/1
- **Gear wheel material**: plastic
- **Suppression components**: 4µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 0.710

Remarks: d = for thread-forming screw M5 DIN 7500

Characteristic curves

Motor picture

![Motor picture](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 148

S 30

S 109

1. Tapered splines 7 x 8 DIN 5481 continuous
2. Terminal 1, OUT A1, grey
3. Terminal 2, OUT A2, black
4. Terminal 3, +, white
5. Terminal 4, -, red
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 205

1. Connector housing AMP 929505-2 mating with connector AMP 929504-2
 blue motor, violet motor, white encoder +, red encoder -, grey A1, black A2

Notes
Series GMPG
Motor type 404 774

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 1.30$
- No-load speed [min$^{-1}$]: $n_0 = 35.0$
- Nominal power [W]: $P_N = 3.94$
- Nominal current [A]: $I_N = 1.5$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_3

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 72/1
- Gear wheel material: plastic
- Suppression components: 7.5µH, 1nF
- Enclosure class: IP 30
- Weight [kg]: 0.570
- Remarks: d = for self-tapping screw M5 DIN 7500

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **W 229**
- **S 30**
- **K 117**

 I Blade terminal ends 4.8 x 0.8 DIN 46 244
 II Blade terminal ends 6.3 x 0.8 DIN 46 244

Drive Technology 2011/12
Design Data
Commutation: Brushed
Direction of rotation: Bi-directional
Bearing type: A:Sleeve - B:Sleeve

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 1.50$
- No-load speed [min$^{-1}$]: $n_0 = 35.0$
- Nominal power [W]: $P_N = 4.47$
- Nominal current [A]: $I_N = 1.5$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: σ_3

Sensor data
- Pulses: 288
- Output channels: 1

Other data
- Gear ratio: 72/1
- Gear wheel material: plastic
- Suppression components: 7.5µH
- Enclosure class: IP 30
- Weight [kg]: 0.710

Remarks: d = for thread-forming screw M5 DIN 7500

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 268

plug housing Molex minifit jr 39-01-2066
(4.2mm -.165"), terminals Molex 39-00-0430
(18-24AWG, gold plated)
1 violet motor, 2 black encoder gnd, 3 white
encoder +, 4 blue motor, 6 red encoder out

Notes
Notes

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Series GMPG

Motor type 404 910

Notes

Series GMPI

Motor type 404 722

Notes

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motor, violet</td>
</tr>
<tr>
<td>2</td>
<td>Motor, blue</td>
</tr>
<tr>
<td>47</td>
<td>77</td>
</tr>
</tbody>
</table>
TECHNICAL DESCRIPTION

- **Motorhousing:** sheet metal, rolled & corrosion protected
- **Excitation field:** permanent magnet
- **Type of gear mesh:** worm gear
- **Gear housing:** zinc die cast
- **Gear wheel material:** plastic or resinbonded fabric
- **Lubrication:** grease
- **Mechanical interface:** output shaft
- **Electric interface:** connector or leads with connector
- **Sensor:** optional
- **Thermal protection:** optional
- **EMC suppression:** optional

APPLICATION

- General machine construction, Automatic machines,
- Agricultural technology, Business machines,
- Laboratory appliances, Medical appliances,
- Traffic & communications technology,
- Photographic/optical equipment
Series SWMP

Motor type 403 194

<table>
<thead>
<tr>
<th>Performance data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage ([V])</td>
<td>(U_N)</td>
</tr>
<tr>
<td>Nominal torque ([Nm])</td>
<td>(M_N)</td>
</tr>
<tr>
<td>No-load speed ([\text{min}^{-1}])</td>
<td>(n_0)</td>
</tr>
<tr>
<td>Nominal power ([W])</td>
<td>(P_N)</td>
</tr>
<tr>
<td>Nominal current ([A])</td>
<td>(I_N)</td>
</tr>
<tr>
<td>Nominal force ([kN])</td>
<td>(F_N)</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>85/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Resinbonded fabric</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight ([kg])</td>
<td>0.710</td>
</tr>
</tbody>
</table>

Remarks: \(d = M6\)

Motor picture

<table>
<thead>
<tr>
<th>Characteristic curves</th>
<th></th>
</tr>
</thead>
</table>

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series SWMP

Motor type 403 279

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>2.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>54.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>9.94</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>1.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 0
- **Output channels**: 0

Other Data
- **Gear ratio**: 85/1
- **Gear wheel material**: Plastic
- **Suppression components**: 7.5µH, 47nF
- **Enclosure class**: IP30
- **Weight [kg]**: 0.710

Remarks: d = 7.5mm, Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

S 30

Spade connector 4.8 DIN 46 247
Series SWMP
Motor type 403 280

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type

<table>
<thead>
<tr>
<th>Performance data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 2.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 52.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 9.57</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 0.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 85/1
- Gear wheel material: Plastic
- Suppression components
- Enclosure class: IP30
- Weight [kg]: 0.710

Remarks: d = 7.5mm, Ball bearing

Motor picture

Difference curves
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**:

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>(U_N) 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>(M_N) 2.00</td>
</tr>
<tr>
<td>No-load speed [min(^{-1})]</td>
<td>(n_0) 52.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>(P_N) 9.34</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>(I_N) 1.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>(F_N) 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>(s_1)</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 85/1
- **Gear wheel material**: Plastic
- **Suppression components**:
- **Enclosure class**: IP30
- **Weight [kg]**: 0.710
- **Remarks**: d = M6, Ball bearing

Characteristic curves

![Characteristic curves](image)

- **Output shaft drawing (W)**, **Wiring diagrams (S)** and **Connector layout (K)**
Series SWMP
Motor type 403 290

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance data
- **Rated voltage [V]**: $U_N = 24$
- **Nominal torque [Nm]**: $M_N = 2.00$
- **No-load speed [min$^{-1}$]**: $n_0 = 52.0$
- **Nominal power [W]**: $P_N = 9.34$
- **Nominal current [A]**: $I_N = 1.5$
- **Nominal force [kN]**: $F_N = 0.00$
- **Duty cycle**: s_1

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 85/1
- **Gear wheel material**: Plastic
- **Suppression components**: IP30
- **Enclosure class**: IP30
- **Weight [kg]**: 0.710

Remarks: d = M6, Ball bearing

Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

S 28

I: green
II: black

83
Series SWMP

Motor type 403 304

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance data
- **Rated voltage [V]**: $U_N = 24$
- **Nominal torque [Nm]**: $M_N = 1.30$
- **No-load speed [min⁻¹]**: $n_0 = 110.0$
- **Nominal power [W]**: $P_N = 12.2$
- **Nominal current [A]**: $I_N = 2.6$
- **Nominal force [kN]**: $F_N = 0.00$
- **Duty cycle**: s_1

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 83/2
- **Gear wheel material**: Plastic
- **Suppression components**
- **Enclosure class**: IP30
- **Weight [kg]**: 0.710

Remarks
- $d = M6$, Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Output shaft drawing](image1)

![Wiring diagrams](image2)

![Connector layout](image3)
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 1.30</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 100.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 11.1</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 83/2
- **Gear wheel material**: Plastic
- **Suppression components**
- **Enclosure class**: IP30
- **Weight [kg]**: 0.710

Remarks: d = M6, Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

S 28

I: black
II: green
Series SWMP
Motor type 404 003

Design Data

<table>
<thead>
<tr>
<th>Commutation</th>
<th>Brushed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td></td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Rated voltage [V]</th>
<th>U_N</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>2.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>50.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>8.98</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>2.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Pulses</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Gear ratio</th>
<th>99/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear wheel material</td>
<td>Resinbonded fabric</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td></td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.710</td>
</tr>
<tr>
<td>Remarks: d = M6, Ball bearing</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I: Housing RDST OCE: 2645082
II: Pins RD OCE: 2642354

Notes
Series SWMP
Motor type 404 127

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

![Motor picture](image)

Performance Data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>2.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>50.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>8.38</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>2.3</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>$s1$</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 0
- **Output channels**: 0

Other Data
- **Gear ratio**: 85/1
- **Gear wheel material**: Resinbonded fabric
- **Suppression components**
- **Enclosure class**: IP30
- **Weight [kg]**: 0.710
- **Remarks**: d = M6, Ball bearing

Characteristic curves

![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **Spade connector**: 6.3 x 0.8 DIN 46 244
- I: black
- II: green

Drive Technology 2011/12
Design Data Performance data

- **Commutation**: Brushed
- **Rated voltage**: UN 24
- **Direction of rotation**: Bi-directional
- **Nominal torque**: MN 2.00 Nm
- **No-load speed**: n0 50.0 min⁻¹
- **Nominal power**: PN 8.38 W
- **Nominal current**: IN 2.3 A
- **Nominal force**: FN 0.00 kN
- **Duty cycle**: s1

Sensor data

- **Pulses**: 0
- **Output channels**: 0

Other data

- **Gear ratio**: 85/1
- **Gear wheel material**: Resinbonded fabric
- **Enclosure class**: IP30
- **Weight**: 0.710 kg
- **Remarks**: d = M6, Ball bearing

Notes

- Terminal 1, motor, violet
- Terminal 2, motor, blue

89
TECHNICAL DESCRIPTION

- **Motorhousing**: sheet metal, rolled & corrosion protected
- **Excitation field**: permanent magnet
- **Type of gear mesh**: worm gear
- **Gear housing**: zinc die cast
- **Gear wheel material**: plastic
- **Lubrication**: grease
- **Mechanical interface**: steel lead screw
- **Electric interface**: connector
- **Sensor**: optional
- **Thermal protection**: optional
- **EMC suppression**: optional

INDUSTRIAL APPLICATION

- Home automation

AUTOMOTIVE APPLICATION

- Seat tilt and height adjustment
Series GMPS
Motor type 404 846

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Sleeve - B:Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 1.50</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 180.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 21.3</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 9.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 2.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>ε3</td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 29
- Output channels: 1

Other data
- Gear ratio: 29/1
- Gear wheel material: plastic
- Suppression components: 5.5µH, 47nF, (0.47µF)
- Enclosure class: IP 40
- Weight [kg]: 0.880
- Remarks: $L = 116\text{mm}$, 1 start worm

Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Shape: 7/16-8 STUB ACME RH, pressure angle 20°, pitch 3.175mm (0.125°), no of starts 1

W 288

S 93

S 85
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com

Notes
Series GMPS
Motor type 404 847

Design Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Sleeve - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>(U_N) 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>(M_N) 1.50</td>
</tr>
<tr>
<td>No-load speed [min(^{-1})]</td>
<td>(n_0) 180.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>(P_N) 21.3</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>(I_N) 6.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>(F_N) 2.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>(\varepsilon_3)</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>29</td>
</tr>
<tr>
<td>Output channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>29/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>5.5(\mu)H, 47nF, (0.47(\mu)F)</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.880</td>
</tr>
</tbody>
</table>

Remarks: L = 116mm, 1 start worm

Other data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>29/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>5.5(\mu)H, 47nF, (0.47(\mu)F)</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.880</td>
</tr>
</tbody>
</table>

Remarks: L = 116mm, 1 start worm

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Motor type 404 847

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Terminal 1</td>
</tr>
<tr>
<td>II</td>
<td>Terminal 5</td>
</tr>
</tbody>
</table>

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Motor type 404 847

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Terminal 1</td>
</tr>
<tr>
<td>II</td>
<td>Terminal 2, Hall-IC +</td>
</tr>
<tr>
<td>III</td>
<td>Terminal 4, Hall-IC +</td>
</tr>
<tr>
<td>IV</td>
<td>Terminal 6</td>
</tr>
</tbody>
</table>
Series GMPS
Motor type 404 847

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com

Notes

Series GMPS
Motor type 405 091

Design Data
- Commutation: none
- Direction of rotation: Bi-directional
- Bearing type: A: Sleeve - B: Sleeve

Performance data
- Rated voltage [V]: U_N 12
- Nominal torque [Nm]: M_N 1.50
- No-load speed [min$^{-1}$]: n_0 145.0
- Nominal power [W]: P_N 16.6
- Nominal current [A]: I_N 6.0
- Nominal force [kN]: F_N 1.50
- Duty cycle: δ 3

Sensor data
- Pulses: 29
- Output channels: 1

Other data
- Gear ratio: 29/1
- Gear wheel material
- Suppression components: 5.5μH, 47nF, (0.47μF)
- Enclosure class: IP40
- Weight [kg]: 0.880

Remarks: 1 start worm

Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Output spindle: 7/16 Stub ACME RH
Terminal 1
Terminal 5
Terminal 4, Hall IC +
Terminal 2, Hall IC +
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 220

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover
1379218-2
www.tycoelectronics.com

Notes

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
Series GMPS
Motor type 405 092

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A: Sleeve - B: Sleeve

Performance data
- Rated voltage [V]: U_N = 12
- Nominal torque [Nm]: M_N = 1.50
- No-load speed [min$^{-1}$]: n_0 = 145.0
- Nominal power [W]: P_N = 16.6
- Nominal current [A]: I_N = 6.0
- Nominal force [kN]: F_N = 1.50
- Duty cycle: s_3

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 29/1
- Gear wheel material
- Suppression components: 5.5µH, 47nF, (0.47µF)
- Enclosure class: IP40
- Weight [kg]: 0.880
- Remarks: 1 start worm

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- Output spindle: 7 / 16 Stub ACME RH
- Terminal 1
- Terminal 5
- Connector TYCO C-208-15621 (Z) mating with: Connector housing 1379217-3 & cover 1379218-2
 - www.tycoelectronics.com
Series GMPS
Motor type 405 237

Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: Sleeve - B: Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 1.50</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 145.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 17.2</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 4.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 1.50</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_3</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>29/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td></td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>0.880</td>
</tr>
</tbody>
</table>

Remarks: L = 116mm

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Output spindle: 7 / 16 Stub ACME RH

Connector TYCO C-208-15621 (Z) mating with:
Connector housing 1379217-3 & cover 1379218-2
www.tycoelectronics.com
Series GMPS
Motor type 405 237

Design Data Performance data
Commutation Brushed Rated voltage [V] UN 24
Direction of rotation Bi-directional Nominal torque [Nm] MN 1.50
Bearing type A: Sleeve - B: Sleeve No-load speed [min⁻¹] n₀ 145.0
Nominal power [W] PN 17.2
Nominal current [A] IN 4.5
Nominal force [kN] FN 1.50
Duty cycle s₃
Sensor data
Pulses 0
Output channels 0
Other data
Gear ratio 29/1
Gear wheel material
Suppression components
Enclosure class IP40
Weight [kg] 0.880
Remarks: L = 116mm

Motor picture
Characteristic curves
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Notes

- Terminal 1, motor, violet
- Terminal 2, motor, blue
TECHNICAL DESCRIPTION

- Motorhousing: deep drawn & corrosion protected
- Excitation field: permanent magnet
- Type of gear mesh: worm gear
- Gear housing: zinc die cast
- Gear wheel material: plastic, steel
- Lubrication: grease
- Mechanical interface: steel shaft
- Electric interface: connector or leads with connector
- Sensor: optional
- Thermal protection: optional
- EMC suppression: optional

INDUSTRIAL APPLICATION
Door & gate openers, pumps, lubricating technology, appliance, linear actuators

AUTOMOTIVE APPLICATION
Trunk & tailgate opening & closing
Series DCK31
Motor type 404 854

Design Data

- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A: ball - B: sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>4.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
<td>65.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>25.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data

- **Pulses**: 69
- **Output channels**: 1

Other data

- **Gear ratio**: 69/1
- **Gear wheel material**: plastic
- **Suppression components**: 6 µH
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.250

Remarks: d=for selftapping screw M6 DIN ISO 965-2

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1. **Gearing (rolled)**:
 - no of teeth 28
 - pitch circle dia 9 mm
 - tip circle dia 9.6 mm
 - root circle dia 8.26 mm
 - space width angle 60° - go/no go
2. **gauge Frenco 33906**: www.frenco.de
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part# F183917, drwg# C-1899078. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

K 325

MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-xx-x or CEP100 F-22-xx-xx-x www.itwpancon.com

K 312

Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-0.1mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSBB244 158 F 6.3-1.5 www.stocko.de

Notes
Series DCK31
Motor type 404 864

Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: ball - B: sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>(U_N) 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>(M_N) 4.00</td>
</tr>
<tr>
<td>No-load speed [min(^{-1})]</td>
<td>(n_0) 66.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>(P_N) 25.4</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>(I_N) 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>(F_N) 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>(s_1)</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pules</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>69/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>3.5(\mu)H, 1(\mu)F</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.210</td>
</tr>
<tr>
<td>Remarks: d = for thread-forming screw M6 DIN ISO 965-2</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I Circlip

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, dwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, dwg# 925603 www.tycoelectronics.com
Series DCK31
Motor type 404 865

Design Data
Commutation Brushed
Direction of rotation Bi-directional
Bearing type A: Ball - B: Sleeve

Performance data
Rated voltage [V] \(U_N \) 24
Nominal torque [Nm] \(M_N \) 4.00
No-load speed [min\(^{-1}\)] \(n_0 \) 75.0
Nominal power [W] \(P_N \) 28.9
Nominal current [A] \(I_N \) 5.5
Nominal force [kN] \(F_N \) 0.00
Duty cycle \(s_1 \)

Sensor data
Pulses 69
Output channels 2

Other data
Gear ratio 69/1
Gear wheel material Plastic
Suppression components 6.0µH, 1nF
Enclosure class IP30
Weight [kg] 1.210

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-1809078 Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg#925603 www.tycoelectronics.com

K 320

K 321

Notes
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:ball - B:sleeve

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 4.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 64.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 24.4</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 0
- **Output channels**: 0

Other Data
- **Gear ratio**: 69/1
- **Gear wheel material**: plastic
- **Suppression components**: 6µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.216

Remarks
- d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Output shaft drawing](image1)

![Wiring diagrams](image2)

![Connector layout](image3)

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W 222</td>
<td>Output shaft drawing (W)</td>
</tr>
<tr>
<td>S 30</td>
<td>Wiring diagrams (S)</td>
</tr>
</tbody>
</table>

Only for connection of encoder
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part# 180907, drwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

Notes
Series DCK31
Motor type 404 867

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A: ball - B: sleeve

Motor picture

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 6.00$
- No-load speed [min$^{-1}$]: $n_0 = 35.0$
- Nominal power [W]: $P_N = 19.2$
- Nominal current [A]: $I_N = 3.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 69/1
- Gear wheel material: plastic
- Suppression components: $6\mu H, 1nF$
- Enclosure class: IP 30
- Weight [kg]: 1.210

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Flat plug (DIN 46244) 6,3x0,8 mating with receptacle housing part#180907, drwg# C-180907 & Receptacles for tabs, conductor cross section 0,5-1,5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com
Series DCK31
Motor type 404 868

Performance data
- Rated voltage [V] \(U_N \) 24
- Nominal torque [Nm] \(M_N \) 4.00
- No-load speed [min\(^{-1}\)] \(n_0 \) 21.0
- Nominal power [W] \(P_N \) 7.79
- Nominal current [A] \(I_N \) 2.0
- Nominal force [kN] \(F_N \) 0.00
- Duty cycle \(s_1 \)

Sensor data
- Pulses 0
- Output channels 0

Other data
- Gear ratio 69/1
- Gear wheel material plastic
- Suppression components 3.5\mu H, 1\mu F
- Enclosure class IP 30
- Weight [kg] 1.210

Design Data
- Commutation Brushed
- Direction of rotation Bi-directional
- Bearing type A: ball - B: sleeve

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristics curves

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part #180907, dwg # C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part # 925603-x, dwg # 925603 www.tycoelectronics.com
Series DCK31
Motor type 404 872

Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Ball - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N = 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N = 4.00</td>
</tr>
<tr>
<td>No-load speed [min^-1]</td>
<td>n_0 = 30.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N = 10.8</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N = 3.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N = 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>69/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>6µH</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.210</td>
</tr>
</tbody>
</table>

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603- x, drwg# 925603 www.tycoelectronics.com
Series DCK31

Motor type 404 961

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance Data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>2.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>160.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>30.9</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 1
- **Output channels**: 2

Other Data
- **Gear ratio**: 53/2
- **Gear wheel material**: plastic
- **Suppression components**: 6µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.210

Remarks: d= for thread forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1. **Serration (rolled)**: No teeth 28, pitch circle dia 9 mm, tip circle dia 9.6 mm, root circle dia 8.26 mm, space width angle 60° - go/no go
 - gauge Frenco 33906 - www.frenco.de

2. Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

111
Series DCK31
Motor type 404 987

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>(U_N) 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>(M_N) 3.00</td>
</tr>
<tr>
<td>No-load speed [min(^{-1})]</td>
<td>(\omega_0) 14.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>(P_N) 3.60</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>(I_N) 1.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>(F_N) 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>(s_1)</td>
</tr>
</tbody>
</table>

Sensor data

- Pulses: 234
- Output channels: 1

Other data

- Gear ratio: 78/1
- Gear wheel material: bronze
- Suppression components: 6µH, 1nF
- Enclosure class: IP 30
- Weight [kg]: 1.210

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

K 321

K 326

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-1809078. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

I Ground connection
Blade terminal 6.3 x 0.8 DIN 46 244

MAS-CON solder tail MLAS 100-3435 mating with end connector CE 100F-22-x-x-x or CEP 100F-22-x-x-x

Notes
Design Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: ball - B: sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>207</td>
</tr>
<tr>
<td>Output channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>69/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>6µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.210</td>
</tr>
</tbody>
</table>

Remarks: $d = $ for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Diagrams

- Output shaft drawing (W)
- Wiring diagrams (S)
- Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part# 180907, drwg# C-180907. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

MAS-CON solder tail MLAS 100-3435 mating with end connector CE 100F-22-xx-xx or CEP 100F-22-xx-xx

I Ground connection
Blade terminal 6.3 x 0.8 DIN 46 244
Design Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Ball - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 3.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 195.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 52.5</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 5.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>207</td>
</tr>
<tr>
<td>Output channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>53/2</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>6µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.210</td>
</tr>
</tbody>
</table>

Remarks

- d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Notes
Series DCK31
Motor type 404 991

Design Data
Commutation
Brushed
Direction of rotation
Bi-directional
Bearing type
A: Ball- B: Sleeve

Performance data
Rated voltage [V] U_N 24
Nominal torque [Nm] M_N 1.00
No-load speed [min$^{-1}$] n_0 270.0
Nominal power [W] P_N 24.5
Nominal current [A] I_N 3.0
Nominal force [kN] F_N 0.00
Duty cycle s_1

Sensor data
Pulses 10.25
Output channels 1

Other data
Gear ratio 41/4
Gear wheel material plastic
Suppression components 6µH, 1nF
Enclosure class IP 30
Weight [kg] 1.250

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

<table>
<thead>
<tr>
<th>K 320</th>
<th>K 325</th>
<th>K 312</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907&. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603- x, drwg# 925603 www.tycoelectronics.com
- MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-x-x or CEP100 F-22-xx-x-x www.itwpancon.com
- Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-1.0mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSB8240.158 F 6.3-1.5 www.stocko.de
Series DCK31
Motor type 405 002

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Ball - B:Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 4.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 21.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 7.79</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 69/1
- Gear wheel material: plastic
- Suppression components: 3.5µH, 1µF
- Enclosure class: IP 30
- Weight [kg]: 1.210

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Flat plug (DIN 46244) 6,3x0.8 mating with receptacle housing part#180907, drwg# C-180907& Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 69
- **Output channels**: 2

Other Data
- **Gear ratio**: 69/1
- **Gear wheel material**: plastic
- **Suppression components**: 6µH
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.250

Remarks:
- $d =$ for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1. Hall-IC A1, terminal 3
2. Hall-IC A2, terminal 4
3. Hall-IC +, terminal 5
4. Hall-IC -, terminal 6
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part# 180907, drwg# C-180907. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

K 324

MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-xx or CEP100 F-22-xx-xx www.itwpancon.com

K 312

Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-0.1mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSB8240.158 F 6.3-1.5 www.stocko.de

Notes
Series DCK31
Motor type 405 054

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A: Ball - B: Sleeve

Performance data
- Rated voltage [V]: \(U_N \) = 24
- Nominal torque [Nm]: \(M_N \) = 4.00
- No-load speed [min\(^{-1}\)]: \(n_0 \) = 195.0
- Nominal power [W]: \(P_N \) = 59.9
- Nominal current [A]: \(I_N \) = 8.0
- Nominal force [kN]: \(F_N \) = 0.00
- Duty cycle: \(s_1 \)

Sensor data
- Pulses: 26.5
- Output channels: 2

Other data
- Gear ratio: 53/2
- Gear wheel material: Plastic
- Suppression components: 6.0µH, 1nF
- Enclosure class: IP30
- Weight [kg]: 1.210

Remarks: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- Hall-IC A1, terminal 3
- Hall-IC A2, terminal 4
- Hall-IC +, terminal 5
- Hall-IC -, terminal 6
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

Ground connection
Blade terminal 6.3 x 0.8 DIN 46 244

Mating connector: Panduit CE100 F22-04

Notes
Series DCK31
Motor type 405 072

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 4.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 55.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 21.5</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 5.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 78
- **Output channels**: 1

Other data
- **Gear ratio**: 78/1
- **Gear wheel material**: plastic
- **Suppression components**: 6µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.210

Remarks: d= for thread forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Insertion (rolled)
- **no of teeth**: 28
- **pitch circle dia**: 9 mm
- **tip circle dia**: 9.6 mm
- **root circle dia**: 8.26 mm
- **space width angle**: 60°
- **goes with go/no go gauge Frenco 33906**
- www.frenco.de
Series DCK31
Motor type 405 072

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

K 312

Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-0.9mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSB240.158 F 6.3-1.5 www.stock.de

K 325

MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-x-x or CEP100 F-22-xx-x-x www.itwpancon.com

Notes
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A: Ball - B: Sleeve

<table>
<thead>
<tr>
<th>Performance data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 4.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 90.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 35.9</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 5.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 69
- **Output channels**: 1

Other data
- **Gear ratio**: 69/1
- **Gear wheel material**: plastic
- **Suppression components**: 6µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.210

Remarks: d=for thread forming screws M6 DIN-ISO 965-2

Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

- **W 277**
- **S 30**
- **S150**

Serration (rolled)
- **no of teeth**: 28
- **pitch circle dia**: 9 mm
- **tip circle dia**: 9.6 mm
- **root circle dia**: 8.26 mm
- **space width angle**: 60°
- **goes with go/no go gauge Frenco 33906**

www.frenco.de
Notes
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A: Ball - B: Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 2.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 120.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 22.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 79.5
- **Output channels**: 1

Other data
- **Gear ratio**: 53/2
- **Gear wheel material**: Plastic
- **Suppression components**: $6.0 \mu H, 1 nF$
- **Enclosure class**: IP30
- **Weight [kg]**: 1.210

Remarks:
- d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Motor picture

Other data
- **Gear ratio**: 53/2
- **Gear wheel material**: Plastic
- **Suppression components**: $6.0 \mu H, 1 nF$
- **Enclosure class**: IP30
- **Weight [kg]**: 1.210

Remarks:
- d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

Flat plug (DIN 46244) 6,3x0,8 mating with receptacle housing part#180907, dwg# C-180907. Receptacles for tabs, conductor cross section 0,5-1,5 sqmm (20-18AWG) part# 925603- x, dwg# 925603, www.tycoelectronics.com

K 325

MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-xx or CEP100 F-22-xx-xx www.itwpancon.com

K 312

Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-0.1mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSB8240.158 F 6.3-1.5, www.stocko.de

Notes
Series DCK31
Motor type 405 251

Notes

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Flat plug (DIN 46244) 6,3x0,8 mating with receptacle housing part#180907, drwg# C-180907

Receptacles for tabs, conductor cross section 0,5-1,5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-x-x or CEP100F-22-xx-x-x www.itwpancon.com

Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-0.1mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSB8240.158 F 6.3-1.5 www.stocko.de
TECHNICAL DESCRIPTION

- **Motor housing:** deep drawn & corrosion protected
- **Excitation field:** permanent magnet
- **Type of gear mesh:** worm gear
- **Gear housing:** zinc die cast
- **Gear wheel material:** plastic
- **Lubrication:** grease
- **Mechanical interface:** steel shaft
- **Electric interface:** connector
- **Sensor:** optional
- **Thermal protection:** optional
- **EMC suppression:** optional

INDUSTRIAL APPLICATION

- Home automation, machine construction

AUTOMOTIVE APPLICATION

- Trunk & tailgate opening & closing
Series DCK35

Motor type 404 885

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 5.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 62.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 29.8</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 5.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 63
- **Output channels**: 2

Other Data
- **Gear ratio**: 63/1
- **Gear wheel material**: plastic
- **Suppression components**: 3.5µH
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.250
- **Remarks**: d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1. **Serration (rolled)**: no of teeth 28, pitch circle dia 9 mm, tip circle dia 9.6 mm, root circle dia 8.26 mm, space width angle 60° - go/no go
2. **gauge Frenco 33906**: www.frenco.de

I Hall-IC A1, terminal 3
II Hall-IC A2, terminal 4
III Hall-IC +, terminal 5
IV Hall-IC -, terminal 6
Series DCK35
Motor type 404 885

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

I Hall-IC A1, terminal 3
II Hall-IC A2, terminal 4
III Hall-IC +, terminal 5
IV Hall-IC -, terminal 6
V Mating connector: Panduit CE100 F22 - 04

K 319

I Ground connection
Blade terminal 6.3 x 0.8 DIN 46 244

K 314

Notes

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603- x, drwg# 925603 www.tycoelectronics.com

Drive Technology 2011/12
Design Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Ball - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U<sub>N</sub> 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M<sub>N</sub> 6.00</td>
</tr>
<tr>
<td>No-load speed [min<sup>-1</sup>]</td>
<td>n<sub>0</sub> 50.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P<sub>N</sub> 28.7</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I<sub>N</sub> 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F<sub>N</sub> 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s<sub>1</sub></td>
</tr>
</tbody>
</table>

Sensor Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>63/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>3,5µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.250</td>
</tr>
</tbody>
</table>

Remarks

- d=for thread forming screws M6 DIN ISO 965-2

Characteristic Curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1 reflection (rolled): no of teeth 28, pitch circle
dia 9 mm, tip circle dia 9.6 mm, root circle
dia 8.26 mm space width angle 60°, go/no go
gauge Frenco 33906 - www.frenco.de

Flat plug (DIN 46244) 6.3x0.8 mating with
tap, part#180907, www.tycoelectronics.com
Series DCK35
Motor type 404 983

Design Data
Commutation: Brushed
Direction of rotation: Bi-directional
Bearing type: A:Ball - B:Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 5.00</td>
</tr>
<tr>
<td>No-load speed [min^-1]</td>
<td>n_0 70.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 33.5</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s 1</td>
</tr>
</tbody>
</table>

Sensor data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>55/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>3.5µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.250</td>
</tr>
<tr>
<td>Remarks: d = for thread-forming screw M6 DIN ISO 965-2</td>
<td></td>
</tr>
</tbody>
</table>

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907 & Receipohces for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-
x, drwg# 925603 www.tycoelectronics.com
Series DCK35
Motor type 404 992

Design Data

- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Ball - B:Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 6.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 60.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 29.3</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 7.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

- Pulses: 0
- Output channels: 0

Other data

- Gear ratio: 63/1
- Gear wheel material: plastic
- Suppression components: 3.5µH
- Enclosure class: IP 30
- Weight [kg]: 1.376

Remarks:

- Motor picture
- Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Output shaft drawing (W):
- Serration (rolled): 28 teeth, pitch circle dia 9 mm, tip circle dia 9.6 mm, root circle dia 8.26 mm, space width angle 60°
- Go/no go gauge: Frenco 33906 - www.frenco.de

Wiring diagrams (S) and Connector layout (K):
- Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, dwg# C-180907 & Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603- x, dwg# 925603 - www.tycoelectronics.com

Motor picture

137
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 314

I Ground connection
Blade terminal 6.3 x 0.8 DIN 46 244

Notes
Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: Ball - B: Sleeve</td>
</tr>
</tbody>
</table>

Performance Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 8.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 75.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 37.7</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 7.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>63</td>
</tr>
<tr>
<td>Output channels</td>
<td>1</td>
</tr>
</tbody>
</table>

Other Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>63/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>3.5µH</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.250</td>
</tr>
</tbody>
</table>

Remarks

d = for thread-forming screw M6 DIN ISO 965-2

Characteristic curves

![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Output shaft drawing](image)

Serration (rolled):
- no of teeth 28
- pitch circle dia 9 mm
- tip circle dia 9.6 mm
- root circle dia 8.26 mm
- space width angle 60°
- go/no go

Gauge Frenco 33966 - www.frenco.de

Terminal 3, A
- R1
- C1
- Hall

Terminal 4, +
- R2
- C2

Terminal 5, -
- R+x
- 5 kΩ / 24 V
- 2 kΩ / 12 V
- 1 kΩ / 5 V

![Wiring diagrams](image)

![Connector layout](image)
Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-180907. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, drwg# 925603 www.tycoelectronics.com

MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-x-x or CEP100F-22-xx-x-x www.itwpancon.com

Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-0.1mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSB244.158 F 6.3-1.5 www.stocko.de
Series DCK35
Motor type 405 033

Design Data

- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A: Ball - B: Sleeve

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>T_N 8.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 53.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 39.2</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 6.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data

- Pulses: 91
- Output channels: 1

Other Data

- Gear ratio: 91/1
- Gear wheel material: plastic
- Suppression components: 3.5µH, 1nF
- Enclosure class: IP 30
- Weight [kg]: 1.250

Remarks: d= for thread forming screws M6 DIN ISO 965-2

Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Splines: 8 x 10 (according to DIN 5481)
Output shaft length = 28mm
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

Flat plug (DIN 46244) 6,3x0,8 mating with receptacle housing part#180907, drwg# C-180907. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603- x, drwg# 925603 www.tycoelectronics.com

K 325

MAS-CON Solder tail MLAS 100-3435 mating with end connector CE100F-22-xx-x-x or CEP100 F-22-xx-x-x www.itwpancon.com

K 312

Ground connection 6.3 x 0.8 DIN 46 244, d=0.9-0.1mm, mating with receptacle for tab, conductor cross section 0.5-1.5 sqmm/20-16 AWG, part# RSB8240.158 F 6.3-1.5 www.stocko.de

Notes
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A: Ball - B: Sleeve

Performance Data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 6.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 60.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 35.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 6.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 91
- **Output channels**: 1

Other Data
- **Gear ratio**: 91/1
- **Gear wheel material**: plastic
- **Suppression components**: 3.5µ, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 0.000

Remarks: d for thread forming screw M6 DIN ISO 964-2

Characteristic curves
![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Splines: 8 x 10 (according to DIN 5481)
Output shaft length = 28mm

Hall-IC A1: terminal 3
Hall-IC A2: terminal 4
Hall-IC +: terminal 5
Hall-IC -: terminal 6

143
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 320

K 321

- + A2 A1

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, dwg# C-180907&. Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603-x, dwg# 925603 www.tycoelectronics.com

I Ground connection
Blade terminal 6.3 x 0.8 DIN 46 244

I Mating connector: Panduit CE100 F22-04

Notes

Ground connection
Blade terminal 6.3 x 0.8 DIN 46 244

Mating connector: Panduit CE100 F22-04
Series DCK35
Motor type 405 063

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A:Ball - B:Sleeve

Performance data
- **Rated voltage [V]**: U_N 24
- **Nominal torque [Nm]**: M_N 3.00
- **No-load speed [min$^{-1}$]**: n_0 240.0
- **Nominal power [W]**: P_N 65.6
- **Nominal current [A]**: I_N 8.0
- **Nominal force [kN]**: F_N 0.00
- **Duty cycle**: s_1

Sensor data
- **Pulses**: 17.5
- **Output channels**: 2

Other data
- **Gear ratio**: 70/4
- **Gear wheel material**: plastic
- **Suppression components**: 6µH, 1nF
- **Enclosure class**: IP 30
- **Weight [kg]**: 1.366

Remarks: $d=$for thread forming screw M6 DIN ISO 965-2

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I Hall-IC A1, terminal 3
II Hall-IC A2, terminal 4
III Hall-IC +, terminal 5
IV Hall-IC -, terminal 6
Series DCK35
Motor type 405 063

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Notes

Flat plug (DIN 46244) 6.3x0.8 mating with receptacle housing part#180907, drwg# C-189097& Receptacles for tabs, conductor cross section 0.5-1.5 sqmm (20-18AWG) part# 925603- x, drwg# 925603 www.tycoelectronics.com

- Ground connection
- Blade terminal 6.3 x 0.8 DIN 46 244
- Mating connector: Panduit CE100 F22-04

Drive Technology 2011/12
TECHNICAL DESCRIPTION

Motorhousing: rolled, corrosion protected
Excitation field: permanent magnet
Type of gear mesh: worm gear
Gear housing: aluminium die cast
Gear wheel material: plastic
Lubrication: grease
Mechanical interface: steel shaft
Electric interface: connector or tinned leads
Sensor: optional
Thermal protection: optional
EMC suppression: optional

APPLICATION

Industry, Linear drives, General machinery,
Vending machines, Agricultural technology,
Office machines, Laboratory devices,
Medical technology, Traffic & communications technology, Film/optics
Series SWMK

Motor type 402 600

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance data
- **Rated voltage [V]**: $U_N = 24$
- **Nominal torque [Nm]**: $M_N = 4.00$
- **No-load speed [min$^{-1}$]**: $n_0 = 50.0$
- **Nominal power [W]**: $P_N = 17.7$
- **Nominal current [A]**: $I_N = 2.5$
- **Nominal force [kN]**: $F_N = 0.00$
- **Duty cycle**: s_1

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 55/1
- **Gear wheel material**: Plastic
- **Suppression components**
- **Enclosure class**: IP30
- **Weight [kg]**: 1.200

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series SWMK
Motor type 402 743

Design Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td></td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>69/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>4.7µH</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Remarks:

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

S 27

I: Spade connector 2.8 x 0.8 DIN 46 247
Series SWMK
Motor type 402 887

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 3.5</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n₀ 50.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 15.9</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 2.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s₁</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 55/1
- **Gear wheel material**: Plastic
- **Suppression components**: 4.7µH, 1nF
- **Enclosure class**: IP30
- **Weight [kg]**: 1.200

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series SWMK
Motor type 403 389

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type:

Performance data

<table>
<thead>
<tr>
<th>parameter</th>
<th>symbol</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>1.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>280.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>24.9</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data
- Pulses | 0 |
- Output channels | 0 |

Other data
- Gear ratio | 41/4 |
- Gear wheel material | Plastic |
- Suppression components |
- Enclosure class | IP30 |
- Weight [kg] | 1.200 |

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1. Blade terminal ends
 6.3 x 0.8 DIN 46 244
2. green
3. red
Series SWMK
Motor type 403 438

Design Data
Commutation: Brushed
Direction of rotation: Bi-directional
Bearing type: A: Ball - B: Sleeve

Motor picture

Performance data
- Rated voltage [V]: $U_N = 36$
- Nominal torque [Nm]: $M_N = 2.00$
- No-load speed [min$^{-1}$]: $n_0 = 100.0$
- Nominal power [W]: $P_N = 18.3$
- Nominal current [A]: $I_N = 3.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: ±1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 53/2
- Gear wheel material: Plastic
- Suppression components: 4.7µH, 1nF
- Enclosure class: IP30
- Weight [kg]: 1.200

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 159
S 30
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series SWMK
Motor type 403 474

Design Data

<table>
<thead>
<tr>
<th>Design Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td></td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Performance data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 0.80</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 350.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 27.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 8.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Sensor data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Other data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>41/4</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>--</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Remarks:

Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Series SWMK
Motor type 403 475

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type

Motor picture

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 0.80$
- No-load speed [min⁻¹]: $n_0 = 350.0$
- Nominal power [W]: $P_N = 27.0$
- Nominal current [A]: $I_N = 4.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 41/4
- Gear wheel material: plastic
- Suppression components: 1nF
- Enclosure class: IP 30
- Weight [kg]: 1.200

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

A: housing MST AMP No. 2-021055-2
B: spade terminals 6.3 x 0.8 DIN 46 244
I: red
II: green
Series SWMK
Motor type 403 559

Design Data

<table>
<thead>
<tr>
<th>Commutation</th>
<th>Brushed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td></td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 2.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 110.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 20.8</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s 1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>53/2</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>4.7µH, 1nF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

A: housing MST AMP No. 2-021055-2
B: spade terminals 6.3 x 0.8 DIN 46 244
I: red
II: green
Series SWMK

Motor type 403 567

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 1.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 260.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 23.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 10.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
</tbody>
</table>

| Duty cycle | s_1 |

Sensor data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>41/4</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td></td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Remarks:

- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Characteristic curves

![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

![Motor picture](image)
Series SWMK
Motor type 403 790

Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td></td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 2.50</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 21.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 4.87</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 1.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>69/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>4.7µH, 1µF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP30</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Remarks:

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Characteristic curves:

- Graph showing the relationship between speed (n/min) and torque (Nm)
- Graph showing the efficiency (η) vs. torque (Nm)

Motor picture

- Diagram of the motor showing AR
- Diagram showing the motor as a whole

Other diagrams:

- Output shaft drawing (W)
- Wiring diagrams (S)
- Connector layout (K)

Output terminal endings:

- Blade terminal ends 6.3 x 0.8 DIN 46 244
- Green
- Red
Series SWMK
Motor type 404 203

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>1.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>264.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>23.2</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data

- Pulses: 10.25
- Output channels: 1

Other data

- Gear ratio: 41/4
- Gear wheel material: Plastic
- Suppression components:
- Enclosure class: IP30
- Weight [kg]: 1.200

Remarks:

- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

[Image of motor picture]

Characteristic curves

[Graph showing characteristic curves]
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>housing MST AMP No. 2-521055-2</td>
</tr>
<tr>
<td>B:</td>
<td>spade terminals 6.3 x 0.8 DIN 46 244</td>
</tr>
<tr>
<td>I:</td>
<td>red</td>
</tr>
<tr>
<td>II:</td>
<td>green</td>
</tr>
</tbody>
</table>

Notes
TECHNICAL DESCRIPTION

- **Motorhousing:** deep drawn & corrosion protected
- **Excitation field:** permanent magnet
- **Type of gear mesh:** worm gear
- **Gear housing:** aluminium die cast
- **Gear wheel material:** plastic
- **Lubrication:** grease
- **Mechanical interface:** steel shaft
- **Electric interface:** connector or tinned leads
- **Sensor:** optional
- **Thermal protection:** optional
- **EMC suppression:** optional

APPLICATION

- Industry, Linear drives, General machinery,
- Vending machines, Agricultural technology,
- Office machines, Laboratory devices,
- Medical technology, Traffic & communications technology, Film/optics
Design Data
- **Commutation:** Brushed
- **Direction of rotation:** Bi-directional
- **Bearing type:**

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 5.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 40.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 16.8</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses:** 0
- **Output channels:** 0

Other Data
- **Gear ratio:** 78/1
- **Gear wheel material:** Plastic
- **Suppression components:** 4.7µH, 1nF
- **Enclosure class:** IP40
- **Weight [kg]:** 1.200
- **Remarks:** Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Motor picture](image)

![Graph](image)

![Output shaft drawing](image)

![Wiring diagram](image)

![Connector layout](image)
Series SW2K
Motor type 403 854

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 144

I Blade terminal ends 6.3 x 0.8 DIN 46 244
II Blade terminal ends 4.8 x 0.8 DIN 46 244

Notes
Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type

Performance Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 2.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 230.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 44.2</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 6.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor Data
- Pulses: 0
- Output channels: 0

Other Data
- Gear ratio: 70/4
- Gear wheel material: plastic
- Suppression components:
- Enclosure class: IP 40
- Weight [kg]: 1.200
- Remarks: Ball bearing

Characteristic Curves

![Characteristic Curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![W 191](image) ![S 28](image)

1 Lefthand thread
Series SW2K
Motor type 403 930

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 144

I Blade terminal ends 6,3 x 0,8 DIN 46 244
II Blade terminal ends 4,8 x 0,8 DIN 46 244

Notes

__
__
__
__
__
__
__
__
Series SW2K

Motor type 403 931

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>2.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
<td>126.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>23.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>3.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 70/4
- **Gear wheel material**: plastic
- **Suppression components**: 4.7µH, 1nF
- **Enclosure class**: IP 40
- **Weight [kg]**: 1.200
- **Remarks**: Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1. Lefthand thread
Series SW2K
Motor type 403 931

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 144

I Blade terminal ends 6.3 x 0.8 DIN 46 244
II Blade terminal ends 4.8 x 0.8 DIN 46 244

Notes

__

__

__

__

__

__

__

__

__

__

Drive Technology 2011/12
Series SW2K
Motor type 403 933

Design Data
Commutation: Brushed
Direction of rotation: Bi-directional

Performance data
- Rated voltage [V]: \(U_N = 24 \)
- Nominal torque [Nm]: \(M_N = 2.00 \)
- No-load speed [min\(^{-1}\)]: \(n_0 = 230.0 \)
- Nominal power [W]: \(P_N = 44.2 \)
- Nominal current [A]: \(I_N = 6.0 \)
- Nominal force [kN]: \(F_N = 0.00 \)
- Duty cycle: \(s_1 \)

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 70/4
- Gear wheel material: plastic
- Suppression components:
- Enclosure class: IP 40
- Weight [kg]: 1.200
- Remarks: Ball bearing

Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Motor picture](image)

![W 191](image)

![S 30](image)

† Lefthand thread
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I Blade terminal ends 6.3 x 0.8 DIN 46 244
II Blade terminal ends 4.8 x 0.8 DIN 46 244

Notes
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**

![Motor picture](image)

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>5.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
<td>54.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>26.3</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>5.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 78/1
- **Gear wheel material**: plastic
- **Suppression components**: 5µH, 1nF
- **Enclosure class**: IP 40
- **Weight [kg]**: 1.200

Remarks:

Characteristic curves

![Characteristic curves](image)

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 194
![Output shaft drawing](image)

S 30
![Wiring diagram](image)

K 144
![Connector layout](image)

- Blade terminal ends 6.3 x 0.8 DIN 46 244
- Blade terminal ends 4.8 x 0.8 DIN 46 244

171
Series SW2K
Motor type 403 939

Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A: Ball - B: Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 5.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 40.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 16.8</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 3.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>± 1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>78/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP40</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Remarks:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic curves</td>
<td></td>
</tr>
</tbody>
</table>

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Notes

I Blade terminal ends 6,3 x 0,8 DIN 46 244
II Blade terminal ends 4,8 x 0,8 DIN 46 244
Series SW2K
Motor type 403 957

Design Data

- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>5.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>65.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>27.2</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data

- **Pulses**: 0
- **Output channels**: 0

Other data

- **Gear ratio**: 63/1
- **Gear wheel material**: Plastic
- **Suppression components**: 4.7µH, 1nF
- **Enclosure class**: IP40
- **Weight [kg]**: 1.200

Remarks: Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1 Lefthand thread
Notes

I Blade terminal ends 6,3 x 0,8 DIN 46 244
II Blade terminal ends 4,8 x 0,8 DIN 46 244
Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: No-load speed [min⁻¹] $n_0 = 65.0$

Performance Data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>5.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
<td>65.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>27.2</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>4.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Data
- Pulses: 0
- Output channels: 0

Other Data
- Gear ratio: 63/1
- Gear wheel material: Plastic
- Suppression components: 4.7µH, 1nF
- Enclosure class: IP40
- Weight [kg]: 1.200

Remarks
- Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

![Motor picture](image)

![Characteristic curve](image)

† Lefthand thread
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I Blade terminal ends 6.3 x 0.8 DIN 46 244
II Blade terminal ends 4.8 x 0.8 DIN 46 244

Notes

__
__
__
__
__
__
__
__
__

177
Design Data
- **Commutation:** Brushed
- **Direction of rotation:** Bi-directional
- **Bearing type:**

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 12</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 3.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 270.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 68.9</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 15.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses:** 0
- **Output channels:** 0

Other data
- **Gear ratio:** 70/4
- **Gear wheel material:** plastic
- **Suppression components:** 1.9µH, 1µF
- **Enclosure class:** IP 40
- **Weight [kg]:** 1.200
- **Remarks:** Ball bearing

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

<table>
<thead>
<tr>
<th>W 317</th>
<th>S 30</th>
<th>K 144</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **W 317**
 - Tapered splines 8 x 10 f
 - (similar DIN 5481)

- **S 30**
 - Blade terminal ends 6.3 x 0.8 DIN 46 244

- **K 144**
 - Blade terminal ends 4.8 x 0.8 DIN 46 244
<table>
<thead>
<tr>
<th>Series</th>
<th>SW2K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor type</td>
<td>404 925</td>
</tr>
</tbody>
</table>

Design Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage ([V])</td>
<td>UN 12</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Nominal torque ([Nm])</td>
<td>MN 3.00</td>
</tr>
<tr>
<td>No-load speed ([\text{min}^{-1}])</td>
<td>n0 270.0</td>
</tr>
<tr>
<td>Nominal power ([W])</td>
<td>PN 68.9</td>
</tr>
<tr>
<td>Nominal current ([A])</td>
<td>IN 15.0</td>
</tr>
<tr>
<td>Nominal force ([kN])</td>
<td>FN 0.00</td>
</tr>
</tbody>
</table>

Sensor Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>70/4</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>1.9µH, 1µF</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 40</td>
</tr>
<tr>
<td>Weight ([kg])</td>
<td>1.200</td>
</tr>
</tbody>
</table>

Remarks: Ball bearing

Notes

- Terminal 1, motor, violet
- Terminal 2, motor, blue

Series GMPI

Motor type 404 722

Notes

- Terminal 1, motor, violet
- Terminal 2, motor, blue
TECHNICAL DESCRIPTION

Motorhousing: deep drawn & corrosion protected
Excitation field: permanent magnet
Type of gear mesh: worm gear
Gear housing: aluminium die cast
Gear wheel material: plastic
Lubrication: grease
Mechanical interface: steel shaft
Electric interface: connector
Sensor: optional
Thermal protection: optional
EMC suppression: optional

INDUSTRIAL APPLICATION
Gate Opener, Patient Hoist,
Machine construction
Series SW2L
Motor type 404 148

Design Data
Commutation: Brushed
Direction of rotation: Bi-directional
Bearing type: A:Ball - B:Sleeve

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 6.00$
- No-load speed [min$^{-1}$]: $n_0 = 48.0$
- Nominal power [W]: $P_N = 27.9$
- Nominal current [A]: $I_N = 6.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 74/1
- Gear wheel material: plastic
- Suppression components: 4.7µH, 1µF
- Enclosure class: IP40
- Weight [kg]: 1.716

Remarks:
Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

S 30
K 144

I Blade terminal ends 6.3 x 0.8 DIN 46 244
II Blade terminal ends 4.8 x 0.8 DIN 46 244
Series SW2L
Motor type 404 360

Design Data
Commutation: Brushed
Direction of rotation: Bi-directional
Bearing type: A: Ball - B: Sleeve

Motor picture

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 8.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0 48.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 36.3</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 5.5</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>±1</td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 74/1
- Gear wheel material: Plastic
- Suppression components: 4.7µH, 1µF
- Enclosure class: IP40
- Weight [kg]: 1.700

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I Blade terminal ends 6.3 x 0.8 DIN 46 244
II Blade terminal ends 4.8 x 0.8 DIN 46 244
Series SW2L
Motor type 404 385

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Ball - B:Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>UN</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>MN</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s1</td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 103/4
- Gear wheel material: plastic
- Suppression components: 4.7μH, 1nF
- Enclosure class: IP 40
- Weight [kg]: 1.700

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1 Lefthand thread
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I Blade terminal ends 6.3 x 0.8 DIN 46 244
II Blade terminal ends 4.8 x 0.8 DIN 46 244

Notes
Series SW2L
Motor type 404 386

Design Data

- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Ball - B:Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 4.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 190.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 73.1</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 7.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>S_1</td>
</tr>
</tbody>
</table>

Sensor data

- Pulses: 0
- Output channels: 0

Other data

- Gear ratio: 103/4
- Gear wheel material: plastic
- Suppression components: 4.7μH, 1nF
- Enclosure class: IP 40
- Weight [kg]: 1.700

Remarks:

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

1 Lefthand thread
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I Blade terminal ends 6.3 x 0.8 DIN 46 244

II Blade terminal ends 4.8 x 0.8 DIN 46 244

Notes
Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A: Ball - B: Sleeve

Performance Data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V] (U_N)</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm] (M_N)</td>
<td>6.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹] (n_0)</td>
<td>48.0</td>
</tr>
<tr>
<td>Nominal power [W] (P_N)</td>
<td>21.9</td>
</tr>
<tr>
<td>Nominal current [A] (I_N)</td>
<td>4.0</td>
</tr>
<tr>
<td>Nominal force [kN] (F_N)</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle (s_1)</td>
<td></td>
</tr>
</tbody>
</table>

Sensor Data
- **Pulses**: 74
- **Output channels**: 1

Other Data
- **Gear ratio**: 74/1
- **Gear wheel material**: Plastic
- **Suppression components**: 4.7µH, 1nF
- **Enclosure class**: IP40
- **Weight [kg]**: 1.730

Remarks:
- Motor picture
- Characteristic curves
- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Splines:
10 x 12f (according to DIN 5481)
Series SW2L
Motor type 404 642

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

K 144

I Blade terminal ends 6,3 x 0,8 DIN 46 244
II Blade terminal ends 4,8 x 0,8 DIN 46 244

Notes
Series SW2L
Motor type 404 642

Notes

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

I
Blade terminal ends 6,3 x 0,8 DIN 46 244

II
Blade terminal ends 4,8 x 0,8 DIN 46 244

I
Terminal 1, motor, violet

II
Terminal 2, motor, blue

190 Drive Technology 2011/12
TECHNICAL DESCRIPTION

- Motorhousing: sheet metal, rolled & corrosion protected
- Excitation field: permanent magnet
- Type of gear mesh: worm gear
- Gear housing: zinc die cast
- Gear wheel material: plastic, resin bonded fabrics, steel
- Lubrication: grease
- Mechanical interface: steel shaft
- Electric interface: connector or leads
- Sensor: –
- Thermal protection: –
- EMC suppression: optional

INDUSTRIAL APPLICATION

Machine construction
Series SWMV
Motor type 402 523

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A: Ball - B: Sleeve

Performance data
- Rated voltage [V]: $U_N = 24$
- Nominal torque [Nm]: $M_N = 6.00$
- No-load speed [min$^{-1}$]: $n_0 = 67.0$
- Nominal power [W]: $P_N = 38.5$
- Nominal current [A]: $I_N = 5.0$
- Nominal force [kN]: $F_N = 0.00$
- Duty cycle: s_1

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 46/1
- Gear wheel material: Bronze
- Suppression components
- Enclosure class: IP20
- Weight [kg]: 2.900

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

A: keyway 5 - P9 width tolerance
B: undercut E 0.6 x 0.2 to DIN 509

A: spade ends 6.3 x 0.8 (according to DIN 46 244)
Series SWMV
Motor type 402 525

<table>
<thead>
<tr>
<th>Design Data</th>
<th>Performance data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Rated voltage [V]</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Nominal torque [Nm]</td>
</tr>
<tr>
<td>Bearing type</td>
<td>No-load speed [min⁻¹]</td>
</tr>
<tr>
<td></td>
<td>Nominal power [W]</td>
</tr>
<tr>
<td></td>
<td>Nominal current [A]</td>
</tr>
<tr>
<td></td>
<td>Nominal force [kN]</td>
</tr>
<tr>
<td></td>
<td>Duty cycle</td>
</tr>
<tr>
<td></td>
<td>Sensor data</td>
</tr>
<tr>
<td></td>
<td>Pulses</td>
</tr>
<tr>
<td></td>
<td>Output channels</td>
</tr>
<tr>
<td></td>
<td>Other data</td>
</tr>
<tr>
<td></td>
<td>Gear ratio</td>
</tr>
<tr>
<td></td>
<td>Gear wheel material</td>
</tr>
<tr>
<td></td>
<td>Suppression components</td>
</tr>
<tr>
<td></td>
<td>Enclosure class</td>
</tr>
<tr>
<td></td>
<td>Weight [kg]</td>
</tr>
</tbody>
</table>

Comments:
- d = M6x16mm

Characteristic curves

- Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Motor picture

Motor data

- Rated voltage: $U_N = 24$ V
- Nominal torque: $M_N = 8.00$ Nm
- No-load speed: $n_0 = 78.0$ min⁻¹
- Nominal power: $P_N = 58.5$ W
- Nominal current: $I_N = 6.0$ A
- Nominal force: $F_N = 0.00$ kN
- Duty cycle: $s = 1$
- Pulses: 0
- Output channels: 0
- Gear ratio: $46/1$
- Gear wheel material: Resinbonded fabric
- Enclosure class: IP 20
- Weight: 2.900 kg

Remarks:
- d = M6x16mm

Fault plug 6,8x0,8 DIN 46244 mating with receptacle for tabs and connector housing 163 006-1, dwg C163006, www.tycoelectronics.com

Drive Technology 2011/12
Series SWMV
Motor type 402 826

<table>
<thead>
<tr>
<th>Design Data</th>
<th>Performance data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Rated voltage [V] (U_N) 12</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Nominal torque [Nm] (M_N) 6.00</td>
</tr>
<tr>
<td>Bearing type</td>
<td>No-load speed (\text{[min}^{-1}]) (n_0) 52.0</td>
</tr>
<tr>
<td></td>
<td>Nominal power [W] (P_N) 29.7</td>
</tr>
<tr>
<td></td>
<td>Nominal current ([A]) (I_N) 6.0</td>
</tr>
<tr>
<td></td>
<td>Nominal force ([kN]) (F_N) 0.00</td>
</tr>
<tr>
<td></td>
<td>Duty cycle (s_1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels ([0])</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio (59/1)</td>
<td></td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>Resinbonded fabric</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class (IP 20)</td>
<td></td>
</tr>
<tr>
<td>Weight ([kg]) 2.900</td>
<td></td>
</tr>
</tbody>
</table>

| Remarks: \(d = M6x16mm \) | |

<table>
<thead>
<tr>
<th>Characteristic curves</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output shaft drawing (W)</td>
<td></td>
</tr>
<tr>
<td>Wiring diagrams (S)</td>
<td></td>
</tr>
<tr>
<td>Connector layout (K)</td>
<td></td>
</tr>
</tbody>
</table>

Flat plug 6.8x0.8 DIN 46244 mating with receptacle for tabs and connector housing 163 006-1, drwg C163006, www.tycoelectronics.com
Series SWMV
Motor type 403 179

Design Data
- **Commutation**: Brushed
- **Direction of rotation**: Bi-directional
- **Bearing type**: A: Ball - B: Sleeve

Performance data
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data
- **Pulses**: 0
- **Output channels**: 0

Other data
- **Gear ratio**: 59/1
- **Gear wheel material**: Bronze
- **Suppression components**: 5.0µH
- **Enclosure class**: IP20
- **Weight [kg]**: 2.900

Remarks:
- **Motor picture**
- **Characteristic curves**

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
- **A**: keyway 5 - P9 width tolerance
- **B**: undercut E 0.6 x 0.2 to DIN 509
- **I**: red
- **II**: green
Series SWMV
Motor type 403 334

Design Data
Commutation
Brushed
Direction of rotation
Bi-directional
Bearing type
A: Ball - B: Sleeve

Performance data
Rated voltage [V] \(U_N \)
24
Nominal torque [Nm] \(M_N \)
3.00
No-load speed [min\(^{-1}\)] \(n_0 \)
220.0
Nominal power [W] \(P_N \)
65.7
Nominal current [A] \(I_N \)
8.0
Nominal force [kN] \(F_N \)
0.00
Duty cycle \(s_1 \)

Sensor data
Pulses
0
Output channels
0

Other data
Gear ratio 44/2
Gear wheel material plastic
Suppression components 6.5\(\mu \)H, 1nF
Enclosure class IP 20
Weight [kg] 2.900

Remarks: d = M8 x 16 mm

Motor picture

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

W 070
S 30
K 274

red
green
Series SWMV
Motor type 403 362

Design Data
- Commutation: Brushed
- Direction of rotation: Bi-directional
- Bearing type: A:Ball - B:Sleeve

Performance data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
<td>24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>5.00</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>52.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>25.7</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>5.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>δ</td>
<td>1</td>
</tr>
</tbody>
</table>

Sensor data
- Pulses: 0
- Output channels: 0

Other data
- Gear ratio: 59/1
- Gear wheel material: Resinbonded fabric
- Suppression components
- Enclosure class: IP 20
- Weight [kg]: 2.900

Remarks: $d = M8 \times 23mm$

Characteristic curves

Motor picture

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Flat plug 6,8x0,8 DIN 46244 mating with receptacle for tabs and connector housing 163 006-1, dwg C163006, www.tycoelectronics.com
Design Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Ball - B:Sleeve</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N 24</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N 8.00</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0 48.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N 36.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N 7.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N 0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>46/1</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>bronze</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP20</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>2.900</td>
</tr>
<tr>
<td>Remarks</td>
<td>$d=M8x23$</td>
</tr>
</tbody>
</table>

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)
TECHNICAL DESCRIPTION

- **Motorhousing:** sheet metal, rolled & corrosion protected
- **Excitation field:** permanent magnet
- **Type of gear mesh:** worm gear
- **Gear housing:** zinc die cast
- **Gear wheel material:** plastic, resin bonded fabrics, steel
- **Lubrication:** grease
- **Mechanical interface:** steel shaft
- **Electric interface:** leads with connector
- **Sensor:** optional
- **Thermal protection:** optional
- **EMC suppression:** optional

INDUSTRIAL APPLICATION

- Machine construction
Series SWMG
Motor type 402 853

Design Data

<table>
<thead>
<tr>
<th>Commutation</th>
<th>Brushed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Ball - B:Ball</td>
</tr>
</tbody>
</table>

Performance data

<table>
<thead>
<tr>
<th>Rated voltage [V]</th>
<th>U_N</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
<td>20.0</td>
</tr>
<tr>
<td>No-load speed [min$^{-1}$]</td>
<td>n_0</td>
<td>27.0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
<td>44.0</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
<td>6.0</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
<td>0.00</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
<td></td>
</tr>
</tbody>
</table>

Sensor data

<table>
<thead>
<tr>
<th>Pulses</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

Other data

<table>
<thead>
<tr>
<th>Gear ratio</th>
<th>50/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td>IP 20</td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 20</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>4.200</td>
</tr>
</tbody>
</table>

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Groove for feather key A 5x3x12 DIN 6885
Series SWMG
Motor type 403 460

<table>
<thead>
<tr>
<th>Design Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation</td>
<td>Brushed</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>Bearing type</td>
<td>A:Ball - B:Sleeve</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage [V]</td>
<td>U_N</td>
</tr>
<tr>
<td>Nominal torque [Nm]</td>
<td>M_N</td>
</tr>
<tr>
<td>No-load speed [min⁻¹]</td>
<td>n_0</td>
</tr>
<tr>
<td>Nominal power [W]</td>
<td>P_N</td>
</tr>
<tr>
<td>Nominal current [A]</td>
<td>I_N</td>
</tr>
<tr>
<td>Nominal force [kN]</td>
<td>F_N</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>s_1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses</td>
<td>0</td>
</tr>
<tr>
<td>Output channels</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear ratio</td>
<td>43/3</td>
</tr>
<tr>
<td>Gear wheel material</td>
<td>plastic</td>
</tr>
<tr>
<td>Suppression components</td>
<td></td>
</tr>
<tr>
<td>Enclosure class</td>
<td>IP 20</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>4.200</td>
</tr>
</tbody>
</table>

Remarks:

Characteristic curves

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Drive Technology 2011/12
Series SWMG
Motor type 403 460

Commutation Brushed
Rated voltage [V] UN 24
Direction of rotation Bi-directional
Nominal torque [Nm] MN 10.0
Bearing type A:Ball - B:Sleeve
No-load speed [min⁻¹] n₀ 165.0
Nominal power [W] PN 156
Nominal current [A] IN 5.0
Nominal force [kN] FN 0.00
Duty cycle s₁

Sensor data
Pulses 0
Output channels 0

Other data
Gear ratio 43/3
Gear wheel material plastic
Suppression components
Enclosure class IP 20
Weight [kg] 4.200

Remarks:
Motor picture Characteristic curves
Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Notes
Notes

Output shaft drawing (W), Wiring diagrams (S) and Connector layout (K)

Terminal 1, motor, violet

Terminal 2, motor, blue

Commutation

Brushed

Rated voltage [V] UN 24

Direction of rotation Bi-directional

Nominal torque [Nm] MN 10.0

Bearing type

A:Ball - B:Sleeve

No-load speed [min-1] n0 165.0

Nominal power [W] PN 156

Nominal current [A] IN 5.0

Nominal force [kN] FN 0.00

Duty cycle s1

Sensor data

Pulses 0

Output channels 0

Other data

Gear ratio 43/3

Gear wheel material plastic

Suppression components

Enclosure class IP 20

Weight [kg] 4.200

Remarks:

Motor picture

Characteristic curves

Notes

__
__
__
__
__
__
__
__
<table>
<thead>
<tr>
<th>Type No.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>402 523</td>
<td>191</td>
</tr>
<tr>
<td>402 525</td>
<td>192</td>
</tr>
<tr>
<td>402 600</td>
<td>149</td>
</tr>
<tr>
<td>402 743</td>
<td>150</td>
</tr>
<tr>
<td>402 757</td>
<td>35</td>
</tr>
<tr>
<td>402 781</td>
<td>36</td>
</tr>
<tr>
<td>402 826</td>
<td>193</td>
</tr>
<tr>
<td>402 853</td>
<td>199</td>
</tr>
<tr>
<td>402 887</td>
<td>150</td>
</tr>
<tr>
<td>402 907</td>
<td>37</td>
</tr>
<tr>
<td>402 944</td>
<td>7</td>
</tr>
<tr>
<td>403 179</td>
<td>194</td>
</tr>
<tr>
<td>403 187</td>
<td>8</td>
</tr>
<tr>
<td>403 194</td>
<td>79</td>
</tr>
<tr>
<td>403 279</td>
<td>80</td>
</tr>
<tr>
<td>403 280</td>
<td>81</td>
</tr>
<tr>
<td>403 281</td>
<td>82</td>
</tr>
<tr>
<td>403 290</td>
<td>83</td>
</tr>
<tr>
<td>403 304</td>
<td>84</td>
</tr>
<tr>
<td>403 334</td>
<td>195</td>
</tr>
<tr>
<td>403 362</td>
<td>196</td>
</tr>
<tr>
<td>403 383</td>
<td>197</td>
</tr>
<tr>
<td>403 389</td>
<td>152</td>
</tr>
<tr>
<td>403 438</td>
<td>153</td>
</tr>
<tr>
<td>403 460</td>
<td>200</td>
</tr>
<tr>
<td>403 474</td>
<td>155</td>
</tr>
<tr>
<td>403 475</td>
<td>156</td>
</tr>
<tr>
<td>403 559</td>
<td>157</td>
</tr>
<tr>
<td>403 567</td>
<td>158</td>
</tr>
<tr>
<td>403 712</td>
<td>85</td>
</tr>
<tr>
<td>403 790</td>
<td>159</td>
</tr>
<tr>
<td>403 854</td>
<td>163</td>
</tr>
<tr>
<td>403 930</td>
<td>165</td>
</tr>
<tr>
<td>403 931</td>
<td>167</td>
</tr>
<tr>
<td>403 933</td>
<td>169</td>
</tr>
<tr>
<td>403 936</td>
<td>171</td>
</tr>
<tr>
<td>403 939</td>
<td>172</td>
</tr>
<tr>
<td>403 957</td>
<td>174</td>
</tr>
<tr>
<td>403 958</td>
<td>176</td>
</tr>
<tr>
<td>404 003</td>
<td>86</td>
</tr>
<tr>
<td>404 127</td>
<td>88</td>
</tr>
<tr>
<td>404 148</td>
<td>181</td>
</tr>
<tr>
<td>404 156</td>
<td>67</td>
</tr>
<tr>
<td>404 157</td>
<td>68</td>
</tr>
<tr>
<td>404 166</td>
<td>69</td>
</tr>
<tr>
<td>404 203</td>
<td>160</td>
</tr>
<tr>
<td>404 284</td>
<td>17</td>
</tr>
<tr>
<td>404 326</td>
<td>38</td>
</tr>
<tr>
<td>404 327</td>
<td>39</td>
</tr>
<tr>
<td>404 360</td>
<td>182</td>
</tr>
<tr>
<td>404 382</td>
<td>18</td>
</tr>
<tr>
<td>404 384</td>
<td>19</td>
</tr>
<tr>
<td>404 385</td>
<td>183</td>
</tr>
<tr>
<td>404 386</td>
<td>185</td>
</tr>
<tr>
<td>404 465</td>
<td>41</td>
</tr>
<tr>
<td>404 469</td>
<td>25</td>
</tr>
<tr>
<td>404 476</td>
<td>9</td>
</tr>
<tr>
<td>404 536</td>
<td>26</td>
</tr>
<tr>
<td>404 596</td>
<td>27</td>
</tr>
<tr>
<td>404 603</td>
<td>70</td>
</tr>
<tr>
<td>404 621</td>
<td>28</td>
</tr>
<tr>
<td>404 636</td>
<td>42</td>
</tr>
<tr>
<td>404 642</td>
<td>187</td>
</tr>
<tr>
<td>404 682</td>
<td>49</td>
</tr>
<tr>
<td>404 694</td>
<td>71</td>
</tr>
<tr>
<td>404 722</td>
<td>44</td>
</tr>
<tr>
<td>404 743</td>
<td>11</td>
</tr>
<tr>
<td>404 744</td>
<td>13</td>
</tr>
<tr>
<td>404 747</td>
<td>50</td>
</tr>
<tr>
<td>404 748</td>
<td>51</td>
</tr>
<tr>
<td>404 753</td>
<td>20</td>
</tr>
<tr>
<td>404 757</td>
<td>21</td>
</tr>
<tr>
<td>404 763</td>
<td>72</td>
</tr>
<tr>
<td>404 764</td>
<td>53</td>
</tr>
<tr>
<td>404 774</td>
<td>74</td>
</tr>
<tr>
<td>404 846</td>
<td>91</td>
</tr>
<tr>
<td>404 847</td>
<td>93</td>
</tr>
<tr>
<td>404 854</td>
<td>101</td>
</tr>
<tr>
<td>404 864</td>
<td>103</td>
</tr>
<tr>
<td>404 865</td>
<td>104</td>
</tr>
<tr>
<td>404 866</td>
<td>106</td>
</tr>
<tr>
<td>404 867</td>
<td>108</td>
</tr>
<tr>
<td>404 868</td>
<td>109</td>
</tr>
<tr>
<td>404 872</td>
<td>110</td>
</tr>
<tr>
<td>404 880</td>
<td>22</td>
</tr>
<tr>
<td>404 885</td>
<td>133</td>
</tr>
<tr>
<td>404 890</td>
<td>29</td>
</tr>
<tr>
<td>404 904</td>
<td>54</td>
</tr>
<tr>
<td>404 905</td>
<td>55</td>
</tr>
<tr>
<td>404 907</td>
<td>57</td>
</tr>
<tr>
<td>404 910</td>
<td>75</td>
</tr>
<tr>
<td>404 925</td>
<td>179</td>
</tr>
<tr>
<td>404 938</td>
<td>135</td>
</tr>
<tr>
<td>404 961</td>
<td>111</td>
</tr>
<tr>
<td>404 965</td>
<td>30</td>
</tr>
<tr>
<td>404 966</td>
<td>31</td>
</tr>
<tr>
<td>404 967</td>
<td>32</td>
</tr>
<tr>
<td>404 980</td>
<td>59</td>
</tr>
<tr>
<td>404 983</td>
<td>135</td>
</tr>
<tr>
<td>404 987</td>
<td>112</td>
</tr>
<tr>
<td>404 988</td>
<td>114</td>
</tr>
<tr>
<td>404 990</td>
<td>116</td>
</tr>
<tr>
<td>404 991</td>
<td>118</td>
</tr>
<tr>
<td>404 992</td>
<td>137</td>
</tr>
<tr>
<td>405 002</td>
<td>120</td>
</tr>
<tr>
<td>405 006</td>
<td>121</td>
</tr>
<tr>
<td>405 031</td>
<td>60</td>
</tr>
<tr>
<td>405 032</td>
<td>139</td>
</tr>
<tr>
<td>405 033</td>
<td>141</td>
</tr>
<tr>
<td>405 054</td>
<td>123</td>
</tr>
<tr>
<td>405 060</td>
<td>143</td>
</tr>
<tr>
<td>405 061</td>
<td>62</td>
</tr>
<tr>
<td>405 063</td>
<td>145</td>
</tr>
<tr>
<td>405 072</td>
<td>125</td>
</tr>
<tr>
<td>405 091</td>
<td>95</td>
</tr>
<tr>
<td>405 092</td>
<td>97</td>
</tr>
<tr>
<td>405 197</td>
<td>127</td>
</tr>
<tr>
<td>405 228</td>
<td>64</td>
</tr>
<tr>
<td>405 237</td>
<td>98</td>
</tr>
<tr>
<td>405 251</td>
<td>129</td>
</tr>
<tr>
<td>405 504</td>
<td>46</td>
</tr>
</tbody>
</table>
Innovatech Solutions Pty Ltd.
59 Northwind Avenue
2535 Point Clare, NSW
Australia
Tel. +61 2 43 22 39 62
Fax +61 2 43 22 39 62
rkmutter@innovatechsolutions.com.au
www.innovatechsolutions.com.au

Eisses Import B.V.
Admiraal Trompstraat 11
3115 HK Schiedam
Holland
Tel. +31 10 02 46 00 18
Fax +31 10 02 46 00 19
info@eissesbv.nl
www.eissesbv.nl

Opis Engineering k.s.
Selská 64
41400 Brno-Malomerice
Czech Republic
Tel. +42 05 43 33 00 55
Fax +42 05 43 24 25 53
cad@opis.cz
www.opis.cz

Oy Movetec AB
Hannukentie 1
02270 Espoo
Finland
Tel. +35 89 52 59 23 0
Fax +35 89 52 59 23 33
pasi.nyberg@movetec.fi
www.movetec.fi

101 automation GmbH
Schollbruch 19-21
74299 Haan
Germany
Tel. +49 21 29 37 63 50
Fax +49 21 29 37 63 59
cad@101automation.de
www.101automation.de

Ott GmbH & Co. KG
Baanstraat 17
78642 Deisslingen
Germany
Tel. +49 74 20 93 99 0
Fax +49 74 20 93 99 25
info@ott-antriebe.de
www.ott-antriebe.de

Electro Mechanical Systems Ltd
Eons House, Callere Park, Aldermaston
Reading RG7 8LN
Great Britain
Tel. +44 11 89 81 73 91
Fax +44 11 89 81 76 13
pboughey@ems-ltd.com
www.ems-limited.co.uk

Strategic Automation Solutions Pvt Ltd
Plot 20/B, Dodanmukundi Ind Estate,
560096 Bangalore
India
Tel. +91 80 41 16 31 67/76
Fax +91 80 41 16 30 47
arun@strategyautomation.com
www.strategyautomation.com

Motech s.r.l.
Via delle Nazioni, 87
41100 Modena
Italy
Tel. +39 59 45 42 96
Fax +39 59 45 16 93
m.coda@motech-italia.com
www.motech-italia.com

Eisses Import B.V.
Admiraal Trompstraat 11
3115 HK Schiedam
Holland
Tel. +31 10 02 46 00 18
Fax +31 10 02 46 00 19
info@eissesbv.nl
www.eissesbv.nl

Opis Engineering, s.r.o
Lúčná 436
83202 Zavazna Poruba
Slovakia
Tel. +42 14 45 54 77 34
Fax +42 14 45 54 77 34
opis@opis.sk
www.opis.sk

Kg Knoutsson AB
Hammarbacken 8
9181 Solleftea
Sweden
Tel. +46 8 92 30 20
Fax +46 8 92 33 66
dan.kimblad@kgk.se
www.kgk.se

S-MIKRON LTD. 511.
Nüfeli-Trencet Merken 66. Sokak No:8
3610 Nüfeli-BURSA
Turkey
Tel. +90 22 44 43 22 33 (Pbx)
Fax +90 22 44 43 22 42
info@s-mikron.com.tr
www.s-mikron.com

Power Electric
15300 23rd Ave North, Suite 400
Plymouth MN 55447
USA
Tel. +1 763 53 10 90
Fax +1 763 53 12 42
nbohn@powerelectric.com
www.powerelectric.com

Kwappi Co. GmbH
Kammelweg 9
2210 Wien
Austria
Tel. +43 12 78 85 85
Fax +43 12 78 85 86
verkauf@kwappi.com
www.kwappi.com

Drive Systems Group
7550 Torbram Road. No 1 & 2
L47 328 Mississauga, ON
Canada
Tel. +1 90 04 05 03 10
Fax +1 90 04 05 03 13
gerorgen@drivesystemsgroup.com
www.drivesystemsgroup.com

Bondo - LMT A/S
Grundvigsalle 168
6400 Sonderborg
Denmark
Tel. +45 74 43 18 80
Fax +45 74 43 18 81
ej@lmttransmission.dk
www.lmttransmission.dk

Comotech Industries
4 rue des Blonnières
BP 82444 Haute Goulaine
44124 - VERTOU, France
Tel. +33 2 40 05 05 05
Fax +33 2 40 05 05 03
thierry.berthou@comotech.fr
www.comotech.fr

JWB GmbH
Bodenseestrasse 228
81243 München
Germany
Tel. +49 89 89 70 10 33
Fax +49 89 89 70 10 00
info@elektromotore.eu
www.elektromotore.eu

Wald Antriebe GmbH
Hans-Hoerbiger-Strasse 1
29644 Waldsee
Germany
Tel. +49 54 61 60 37 07
Fax +49 54 61 60 37 08
info@waldantriebe.de
waldantriebe.de

Eisses Import B.V.
Admiraal Trompstraat 11
3115 HK Schiedam
Holland
Tel. +31 10 02 46 00 18
Fax +31 10 02 46 00 19
info@eissesbv.nl
www.eissesbv.nl

Mechatronics Ltd.
P.O. Box 3518
54308 Ottawa
Canada
Tel. +1 613 732 36 43
Fax +1 613 732 36 39
mechatronics@mechatronics.ca

Nidec-Shimpo Corp
1 Terada Kohtari, Nagaokakyo City
617-0833 Kyoto
Japan
Tel. +81 7 59 59 79 82
Fax +81 7 59 59 79 76
shinichi.takahashi@nidec-shimpo.co.jp
www.nidec-shimpo.co.jp

Aratron AS
Bjørnerudveien 17
1266 Oslo
Norway
Tel. +47 23 19 16 60
Fax +47 23 19 16 61
christian@aratron.no
www.aratron.no

Motech Iberica
Avda. de Las Cortes Valencianas, 41 0º G
46015 Valencia
Spain
Tel. +34 9 65 45 54 05
Fax +34 9 65 45 56 33
jnavarro@motech.es
www.motech.es

Antimon AG
Luzernstrasse 91
5630 Muri (AG)
Switzerland
Tel. +41 56 66 75 40 30
Fax +41 56 66 75 40 31
info@antimon.ch
www.antimon.ch

Burns Controls Comp. Inc.
21332 Beta Road
Dallas TX 75244
USA
Tel. +1 972 23 57 67 12
Fax +1 972 23 53 80 39
burns@burnscontrols.com
www.burnscontrols.com

Worldwide Distributors

Spain

Austria

Switzerland

Canada

USA
For current information, product downloads and up-to-date news and in-depth drive selection assistance, log on to our new website! Find your perfect drive with just one click: www.nidec-ma.com

- Comfortable seating thanks to the many adjuster motors in the seats.
- Motors in the sliding roof to let the sun in, and to move the roller sun blind, to keep it out.
- Electrically adjustable steering columns for optimum ergonomics.
- Adjustable spoiler for improved driving safety at higher speeds.
- Automatically controlled opening and closing of sliding doors, trunk lids or tailgates.
- Active Safety for driving and braking owing to motors in the ABS/ESP system.

NIDEC Motors & Actuators for comfort and safety in the automobile.
We get things moving.